DOI QR코드

DOI QR Code

Raman Spectroscopic Studies on Two-Dimensional Materials

  • 투고 : 2015.09.11
  • 심사 : 2015.09.13
  • 발행 : 2015.09.30

초록

Raman spectroscopy is one of the most widely used tools in the field of graphene and two-dimensional (2D) materials. It is used not only to characterize structural properties such as the number of layers, defect densities, strain, etc., but also to probe the electronic band structure and other electrical properties. As the field of 2D materials expanded beyond graphene to include new classes of layered materials including transition metal dichalcogenides such as $MoS_2$, new physical phenomena such as anomalous resonance behaviors are observed. In this review, recent results from Raman spectroscopic studies on 2D materials are summarized.

키워드

참고문헌

  1. Blake P, Hill E W, Castro Neto A H, Novoselov K S, Jiang D, Yang R, Booth T J, and Geim A K (2007) Making graphene visible. Appl. Phys. Lett. 91, 063124. https://doi.org/10.1063/1.2768624
  2. Cancado L G, Jorio A, Ferreira E H M, Stavale F, Achete C A, Capaz R B, Moutinho M V O, Lombardo A, Kulmala T S, and Ferrari A C (2011) Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 11, 3190-3196. https://doi.org/10.1021/nl201432g
  3. Carvalho B R, Malard L M, Alves J M, Fantini C, and Pimenta M A (2015) Symmetry-dependent exciton-phonon coupling in 2D and bulk $MoS_2$ observed by resonance Raman scattering. Phys. Rev. Lett. 114, 136403. https://doi.org/10.1103/PhysRevLett.114.136403
  4. Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, and Geim A K (2009) The electronic properties of graphene. Rev. Mod. Phys. 81, 109-162. https://doi.org/10.1103/RevModPhys.81.109
  5. Chakraborty B, Bera A, Muthu D V S, Bhowmick S, Waghmare U V, and Sood A K (2012) Symmetry-dependent phonon renormalization in monolayer $MoS_2$ transistor. Phys. Rev. B 85, 161403. https://doi.org/10.1103/PhysRevB.85.161403
  6. Chakraborty B, Matte H S S R, Sood A K, and Rao C N R (2013) Layerdependent resonant Raman scattering of a few layer $MoS_2$. J. Raman Spectrosc. 44, 92-96. https://doi.org/10.1002/jrs.4147
  7. Chen S Y, Zheng C, Fuhrer M S, and Yan J (2015) Helicity-resolved Raman scattering of $MoS_2$, $MoSe_2$, $WS_2$, and $WSe_2$ atomic layers. Nano Lett. 15, 2526-2532. https://doi.org/10.1021/acs.nanolett.5b00092
  8. Cong C, Yu T, Sato K, Shang J, Saito R, Dresselhaus G F, and Dresselhaus M S (2011) Raman characterization of ABA- and ABC-stacked trilayer graphene. ACS Nano 5, 8760-8768. https://doi.org/10.1021/nn203472f
  9. Conley H J, Wang B, Ziegler J I, Haglund R F, Pantelides S T, and Bolotin K I (2013) Bandgap engineering of strained monolayer and bilayer $MoS_2$. Nano Lett. 13, 3626-3630. https://doi.org/10.1021/nl4014748
  10. Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, and Hone J (2010) Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722-726. https://doi.org/10.1038/nnano.2010.172
  11. del Corro E, Terrones H, Elias A, Fantini C, Feng S, Nguyen M A, Mallouk T E, Terrones M, and Pimenta M A (2014) Excited excitonic states in 1L, 2L, 3L, and bulk $WSe_2$ observed by resonant Raman spectroscopy. ACS Nano 8, 9629-9635. https://doi.org/10.1021/nn504088g
  12. Dresselhaus M S, Jorio A, Souza Filho A G, and Saito R (2010) Defect characterization in graphene and carbon nanotubes using Raman spectroscopy. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 368, 5355-5377. https://doi.org/10.1098/rsta.2010.0213
  13. Eckmann A, Felten A, Mishchenko A, Britnell L, Krupke R, Novoselov K S, and Casiraghi C (2012) Probing the nature of defects in graphene by Raman spectroscopy. Nano Lett. 12, 3925-3930. https://doi.org/10.1021/nl300901a
  14. Fan J H, Gao P, Zhang A M, Zhu B R, Zeng H L, Cui X D, He R, and Zhang Q M (2014) Resonance Raman scattering in bulk 2H-MX2 (M = Mo, W; X = S, Se) and monolayer $MoS_2$. J. Appl. Phys. 115, 053527. https://doi.org/10.1063/1.4862859
  15. Ferrari A C and Basko D M (2013) Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8, 235-246. https://doi.org/10.1038/nnano.2013.46
  16. Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, and Geim A K (2006) Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401. https://doi.org/10.1103/PhysRevLett.97.187401
  17. Geim A K and Novoselov K S (2007) The rise of graphene. Nat. Mater. 6, 183-191. https://doi.org/10.1038/nmat1849
  18. Golasa K, Grzeszczyk M, Leszczynski P, Faugeras C, Nicolet A A L, Wysmolek A, Potemski M, and Babinski A (2014) Multiphonon resonant Raman scattering in $MoS_2$. Appl. Phys. Lett. 104, 092106. https://doi.org/10.1063/1.4867502
  19. Jegal S, Hao Y, Yoon D, Ruoff R S, Yun H, Lee S W, and Cheong H (2013) Crystallographic orientation of early domains in CVD graphene studied by Raman spectroscopy. Chem. Phys. Lett. 568-569, 146-150. https://doi.org/10.1016/j.cplett.2013.03.043
  20. Klots A R, Newaz A K M, Wang B, Prasai D, Krzyzanowska H, Lin J, Caudel D, Ghimire N J, Yan J, Ivanov B L, Velizhanin K A, Burger A, Mandrus D G, Tolk N H, Pantelides S T, and Bolotin K I (2014) Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy. Sci. Rep. 4, 6608. https://doi.org/10.1038/srep06608
  21. Lee C, Yan H, Brus L E, Heinz T F, Hone J, and Ryu S (2010) Anomalous lattice vibrations of single- and few-layer $MoS_2$. ACS Nano 4, 2695-2700. https://doi.org/10.1021/nn1003937
  22. Lee J E, Ahn G, Shim J, Lee Y S, and Ryu S (2012) Optical separation of mechanical strain from charge doping in graphene. Nat. Commun. 3, 1024. https://doi.org/10.1038/ncomms2022
  23. Lee J U, Park J, Son Y W, and Cheong H (2015) Anomalous excitonic resonance Raman effects in few-layered $MoS_2$. Nanoscale 7, 3229-3236. https://doi.org/10.1039/C4NR05785F
  24. Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, and Zhang Y (2014) Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372-377. https://doi.org/10.1038/nnano.2014.35
  25. Li S L, Miyazaki H, Song H, Kuramochi H, Nakaharai S, and Tsukagoshi K (2012) Quantitative Raman spectrum and reliable thickness identification for atomic layers on insulating substrates. ACS Nano 6, 7381-7388. https://doi.org/10.1021/nn3025173
  26. Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tomanek D, and Ye P D (2014) Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033-4041. https://doi.org/10.1021/nn501226z
  27. Livneh T and Spanier J E (2015) A comprehensive multiphonon spectral analysis in $MoS_2$. 2D Mater. 2, 035003. https://doi.org/10.1088/2053-1583/2/3/035003
  28. Lui C H, Li Z, Chen Z, Klimov P V, Brus L E, and Heinz T F (2011) Imaging stacking order in few-layer graphene. Nano Lett. 11, 164-169. https://doi.org/10.1021/nl1032827
  29. Luo X, Zhao Y, Zhang J, Toh M, Kloc C, Xiong Q, and Quek S Y (2013) Effects of lower symmetry and dimensionality on Raman spectra in two-dimensional $WSe_2$. Phys. Rev. B 88, 195313. https://doi.org/10.1103/PhysRevB.88.195313
  30. Mak K F, Lee C, Hone J, Shan J, and Heinz T F (2010) Atomically thin $MoS_2$: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805. https://doi.org/10.1103/PhysRevLett.105.136805
  31. Mignuzzi S, Pollard A J, Bonini N, Brennan B, Gilmore I S, Pimenta M A, Richards D, and Roy D (2015) Effect of disorder on Raman scattering of single-layer $MoS_2$. Phys. Rev. B 91, 195411. https://doi.org/10.1103/PhysRevB.91.195411
  32. Mohiuddin T M G, Lombardo A, Nair R R, Bonetti A, Savini G, Jalil R, Bonini N, Basko D M, Galiotis C, Marzari N, Novoselov K S, Geim A K, and Ferrari A C (2009) Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Gruneisen parameters, and sample orientation. Phys. Rev. B 79, 205433. https://doi.org/10.1103/PhysRevB.79.205433
  33. Molina-Sanchez A and Wirtz L (2011) Phonons in single-layer and fewlayer $MoS_2$ and $WS_2$. Phys. Rev. B 84, 155413. https://doi.org/10.1103/PhysRevB.84.155413
  34. Nguyen T A, Lee J U, Yoon D, and Cheong H (2014) Excitation energy dependent Raman signatures of ABA- and ABC-stacked few-layer graphene. Sci. Rep. 4, 4630.
  35. Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, and Firsov A A (2004) Electric field effect in atomically thin carbon films. Science 306, 666-669. https://doi.org/10.1126/science.1102896
  36. Pimenta M A, del Corro E, Carvalho B R, Fantini C, and Malard L M (2015) Comparative study of Raman spectroscopy in graphene and $MoS_2$-type transition metal dichalcogenides. Acc. Chem. Res. 48, 41-47. https://doi.org/10.1021/ar500280m
  37. Qiu D Y, da Jornada F H, and Louie S G (2013) Optical spectrum of $MoS_2$: many-body effects and diversity of exciton states. Phys. Rev. Lett. 111, 216805. https://doi.org/10.1103/PhysRevLett.111.216805
  38. Scheuschner N, Ochedowski O, Schleberger M, and Maultzsch J (2012) Resonant Raman profiles and $\mu$-photoluminescence of atomically thin layers of molybdenum disulfide. Phys. Status Solidi 249, 2644-2647. https://doi.org/10.1002/pssb.201200389
  39. Staiger M, Gillen R, Scheuschner N, Ochedowski O, Kampmann F, Schleberger M, Thomsen C, and Maultzsch J (2015) Splitting of monolayer out-of-plane $A_1$' Raman mode in few-layer $WS_2$. Phys. Rev. B 91, 195419. https://doi.org/10.1103/PhysRevB.91.195419
  40. Tan P H, Han W P, Zhao W J, Wu Z H, Chang K, Wang H, Wang Y F, Bonini N, Marzari N, Pugno N, Savini G, Lombardo A, and Ferrari A C (2012) The shear mode of multilayer graphene. Nat. Mater. 11, 294-300. https://doi.org/10.1038/nmat3245
  41. Tonndorf P, Schmidt R, Bottger P, Zhang X, Borner J, Liebig A, Albrecht M, Kloc C, Gordan O, Zahn D R T, Michaelis de Vasconcellos S, and Bratschitsch R (2013) Photoluminescence emission and Raman response of monolayer $MoS_2$, $MoSe_2$, and $WSe_2$. Opt. Express 21, 4908-4916. https://doi.org/10.1364/OE.21.004908
  42. Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, and Strano M S (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699-712. https://doi.org/10.1038/nnano.2012.193
  43. Wang Y, Cong C, Qiu C, and Yu T (2013) Raman spectroscopy study of lattice vibration and crystallographic orientation of monolayer $MoS_2$ under uniaxial strain. Small 9, 2857-2861. https://doi.org/10.1002/smll.201202876
  44. Yan J, Zhang Y, Kim P, and Pinczuk A (2007) Electric field effect tuning of electron-phonon coupling in graphene. Phys. Rev. Lett. 98, 166802. https://doi.org/10.1103/PhysRevLett.98.166802
  45. Yoon D, Moon H, Cheong H, Choi J, Choi J, and Park B (2009a) Variations in the Raman spectrum as a function of the number of graphene layers. J. Korean Phys. Soc. 55, 1299-1303. https://doi.org/10.3938/jkps.55.1299
  46. Yoon D, Moon H, Son Y W, Choi J S, Park B H, Cha Y H, Kim Y D, and Cheong H (2009b) Interference effect on Raman spectrum of graphene on $SiO_2$/Si. Phys. Rev. B 80, 125422. https://doi.org/10.1103/PhysRevB.80.125422
  47. Yoon D, Son Y W, and Cheong H (2011) Strain-dependent splitting of the double-resonance raman scattering band in graphene. Phys. Rev. Lett. 106, 155502. https://doi.org/10.1103/PhysRevLett.106.155502
  48. Zhang X, Han W P, Wu J B, Milana S, Lu Y, Li Q Q, Ferrari A C, and Tan P H (2013) Raman spectroscopy of shear and layer breathing modes in multilayer $MoS_2$. Phys. Rev. B 87, 115413. https://doi.org/10.1103/PhysRevB.87.115413
  49. Zhang X, Qiao X F, Shi W, Wu J B, Jiang D S, and Tan P H (2015) Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev. 44, 2757-2785. https://doi.org/10.1039/C4CS00282B
  50. Zhao W, Ghorannevis Z, Amara K K, Pang J R, Toh M, Zhang X, Kloc C, Tan P H, and Eda G (2013a) Lattice dynamics in mono- and few-layer sheets of $WS_2$ and $WSe_2$. Nanoscale 5, 9677. https://doi.org/10.1039/c3nr03052k
  51. Zhao Y, Luo X, Li H, Zhang J, Araujo P T, Gan C K, Wu J, Zhang H, Quek S Y, Dresselhaus M S, and Xiong Q (2013b) Interlayer breathing and shear modes in few-trilayer $MoS_2$ and $WSe_2$. Nano Lett. 13, 1007-1015. https://doi.org/10.1021/nl304169w

피인용 문헌

  1. Resonance Raman effects in transition metal dichalcogenides pp.03770486, 2018, https://doi.org/10.1002/jrs.5200
  2. thin film vol.6, pp.2, 2018, https://doi.org/10.1088/2053-1591/aae9a5
  3. Spotting the differences in two-dimensional materials – the Raman scattering perspective vol.47, pp.9, 2018, https://doi.org/10.1039/C7CS00874K