DOI QR코드

DOI QR Code

Characteristics of the Sinusoidal Flux Continuous Operation Mode for the Submerged Flat-sheet Membrane Module in Cutting Oil Solution

절삭유 수용액내 침지식 평막 모듈에 대한 사인파형 투과유속 연속운전 방식의 특성

  • Won, In Hye (Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology) ;
  • Chung, Kun Yong (Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology)
  • 원인혜 (서울과학기술대학교 화공생명공학과) ;
  • 정건용 (서울과학기술대학교 화공생명공학과)
  • Received : 2014.11.14
  • Accepted : 2014.12.11
  • Published : 2015.10.01

Abstract

In this study transmembrane pressure (TMP) was measured with respect to permeate flux through the submerged flat sheet membrane for the emulsion and semi-synthetic cutting oil solutions. The effective area and nominal pore size of the used microfiltration membrane were $0.02m^2$ and $0.15{\mu}m$, respectively. The experiments were carried out simultaneously for run/stop (R/S) and sinusoidal flux continuous operation (SFCO) modes using two submerged membrane module in the reservoir. TMP for the case of SFCO was maintained under 60% of R/S, and the effect on TMP drop decreased as the permeate flux increased for emulsion cutting oil solution. Membrane fouling for the semisynthetic solution showing low turbidity was induced lower comparing to the emulsion solution. Also, the effect on TMP drop for SFCO decreased during long-term operation.

본 연구에서는 emulsion 및 semi-synthetic 절삭유 수용액에 침지된 평막형 분리막의 막간 압력차(TMP)를 투과유속에 따라서 측정하였다. 사용한 정밀여과막은 유효 막면적이 $0.02m^2$이고 공칭 세공크기가 $0.15{\mu}m$이었다. 저장조 내에 2개의 분리막 모듈을 침지시키고 운전/휴직(R/S) 및 사인파형 투과유속 연속운전(SFCO) 실험을 동시에 실시하였다. Emulsion 수용액의 경우 SFCO에 의한 TMP는 R/S에 비하여 60% 이하로 유지되었으며 투과유속이 증가함에 따라서 TMP 감소효과는 줄어들었다. Semi-synthetic 수용액은 emulsion 수용액보다 탁도가 낮아 막오염이 적게 유발되었으며 장시간 운전할 경우 SFCO에 의한 TMP 효과도 감소하였다.

Keywords

References

  1. Bensadok, K., Belkacem, M. and Nezzal, G., "Treatment of Cutting Oil/water Emulsion by coupling Coagulation and Dissolved Air Flotation," Desalination, 206, 440-448(2007). https://doi.org/10.1016/j.desal.2006.02.070
  2. Ayotamuno, M. J., Kogbara, R. B., Ogaji, S. O. T. and Probert, S. D., "Petroleum contaminated Ground-water: Remediation Using Activated Carbon," Appl. Energy, 83, 1258-1264(2006). https://doi.org/10.1016/j.apenergy.2006.01.004
  3. Al-Shamrani, A. A., James, A. and Xiao, H., "Separation of Oil from Water by Dissolved Air Flotation," Colloid Surf. A, 209, 15-26(2002). https://doi.org/10.1016/S0927-7757(02)00208-X
  4. Zhao, X., Wang, Y., Ye, Z., Borthwick, A. G. and Ni, J., "Oil field Wastewater Treatment in Biological Aerated Filter by Immobilized Microorganisms," Process Biochem., 41, 1475-1483(2006). https://doi.org/10.1016/j.procbio.2006.02.006
  5. Cheryan, M., "Ultrafiltration and Microfiltration Handbook," CRC Press LLC, Florida(1998).
  6. Khemis, M., Tanguy, G., Leclerc, J. P., Valentin, G. and Lapicque, F., "Electrocoagulation for the Treatment of Oil Suspensions: Relation Between the Rates of Electrode Reactions and the Efficiency of Waste Removal," Process Saf. Environ. Protect., 83, 50-57(2005). https://doi.org/10.1205/psep.03381
  7. Chung, K. Y., Kim, J. J., Kim, K. J. and Fane, A. G., "Microfiltration Characteristics for Emulsified Oil in Water," Membrane J., 8(4), 203-209(1998).
  8. Yoon, S. M., Park, K., Kim, J. Y., Han, H. J., Kim, T. I., Kang, K. S., Bae, W. and Rhee, Y. W., "Technology Trend of Oil Treatment for Produced Water by the Patent Analysis," Korean Chem. Eng. Res., 49, 681-687(2011). https://doi.org/10.9713/kcer.2011.49.6.681
  9. Schoeman, J. J. and Novhe, O., "Evaluation of Microfiltration for the Treatment of spent Cutting-Oil," Water SA, 33(2), 245-248 (2009).
  10. Salahi, A., Gheshlaghi, A., Mohammadi, T. and Madaeni, S. S., "Experimental Performance Evaluation of Polymeric Membranes for Treatment of an Industrial Oily Wastewater," Desalination, 262(1), 235-242(2010). https://doi.org/10.1016/j.desal.2010.06.021
  11. Visvanathan, C. and Aim, R. B., "Application of an Electricfield for the Reduction of Particle and Colloidal Membrane Fouling on Crossflow Microfiltration," Sep. Sci. Technology, 24(5/6), 383(1989). https://doi.org/10.1080/01496398908049776
  12. Patel, T. M. and Nath, K., "Modeling of Permeate Flux and Mass Transfer Resistances in the Reclamation of Molasses Wastewater by a novel Gas-sparged Naofiltration," Korean J. Chem. Eng., 31(10), 1865-1876(2014). https://doi.org/10.1007/s11814-014-0139-7
  13. Milic, J. K., Muric, A., Petrinic, I. and Simonic, M., "Recent Developments in Membrane Treatment of spent Cutting-Oils: A Review," I&EC Research, 52, 7603-7616(2013).
  14. Li, X., Li, J., Wang, J., Wang, H., Cui, C., He, B. and Zhang, H., "Direct Monitoring of Sub-critical Flux Fouling in a Horizontal Double-end Submerged Hollow Fiber Membrane Module Using Ultrasonic Time Domain Reflectometry," J. Membr. Sci., 451, 226-233(2014). https://doi.org/10.1016/j.memsci.2013.09.060
  15. Obaid, M., Baraket, N. A. M., Fadali, O. A., Motlak, M., Almajid A. A. and Khalil, K. A., "Effective and Reusable Oil/water Separation Membranes Based on Modified Polysulfone Electrospun Nanofiber Mats," Chem. Eng. J., 259, 449-456(2015). https://doi.org/10.1016/j.cej.2014.07.095
  16. Zhu, X., Tu, W., Wee, K. H. and Bai, R., "Effective and Low Fouling Oil/water Separation by a Novel Hollow Fiber Membrane with Both Hydrophilic and Oleophobic Surface Properties," J. Membr. Sci., 466, 36-44(2014). https://doi.org/10.1016/j.memsci.2014.04.038
  17. Belkacem, M., Hadjiev, D. and Aurelle, Y., "A Model for Calculating the Steady State Flux of Organic Ultrafiltration Membranes for the Case of Cutting Oil Emulsion," Chem. Eng. J., 56, 27-32(1995).
  18. Chung, K. Y., Kim, D. C. and Won, I. H., "Method for Reducing Membrane Fouling in the Water Treatment Apparatus," Korea Patent, 10-2014-0149394 (2014).
  19. Zeman, L. J. and Zydney, A. L., "Microfiltration and Ultrafiltration Principles and Applications," Marcel Dekker Inc., New York (1996).

Cited by

  1. 활성슬러지 수용액 내 침지식 중공사막의 역세척 및 사인파형 연속투과 운전방식에 따른 막간차압 vol.25, pp.6, 2015, https://doi.org/10.14579/membrane_journal.2015.25.6.524