DOI QR코드

DOI QR Code

Effect of Salt on Crystal Growth of Plate-like Alumina Particles by Molten-salt Method

Molten-salt 방법에 의해 합성되는 판상형 알루미나 분말의 입성장 거동에 미치는 Salt의 영향

  • Kim, Bo Yeon (Energy Efficient Material Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Yoon Joo (Energy Efficient Material Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Shin, Dong-geun (Energy Efficient Material Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Soo Ryong (Energy Efficient Material Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Kwon, Woo Teck (Energy Efficient Material Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Younghee (Energy Efficient Material Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Choi, Duck Kyun (Division of Materials Science and Engineering, Hanyang University)
  • 김보연 (한국세라믹기술원 에너지효율소재팀) ;
  • 이윤주 (한국세라믹기술원 에너지효율소재팀) ;
  • 김수룡 (한국세라믹기술원 에너지효율소재팀) ;
  • 권우택 (한국세라믹기술원 에너지효율소재팀) ;
  • 신동근 (한국세라믹기술원 에너지효율소재팀) ;
  • 김영희 (한국세라믹기술원 에너지효율소재팀) ;
  • 최덕균 (한양대학교 신소재공학과)
  • Received : 2014.11.15
  • Accepted : 2014.12.15
  • Published : 2015.10.01

Abstract

Alumina powder have been expanded its application in industry and required to control its morphology such as powder size and aspect ratio of single particle. It can be synthesized by molten - salt method which is possible to obtain various shapes of ceramic particles by controlling the growth direction because each crystal face has different growth rate. In this study, various combinations of salts such as NaCl, $Na_2SO_4$, $Na_3PO_4$ and their mixture were used for control the growth of plate like alumina particle from the initial stage of synthesis because salt having different ionic strength can control the growth direction of ceramic particle under its melting condition around $800{\sim}900^{\circ}C$, and growth behavior of plate-like alumina particle with different reaction conditions such as temperature and concentration on the crystal size and shape was studied.

일반적으로 결정은 계면에 따라 그 성장속도가 다르기 때문에 계면의 성장을 제어함으로써 다양한 형태의 결정입자를 얻는 것이 가능하다. 알루미나의 경우 산업적 이용범위가 다양해지고 있어, 다양한 크기 또는 종횡비가 다른 다양한 형상의 분말이 요구되기도 한다. 용융염(molten-salt)을 이용하여 세라믹 입자를 성장시킬 경우, $800{\sim}900^{\circ}C$ 이상에서 용융되는 salt의 조건을 변화함으로써 세라믹 입자의 결정 성장 방향을 제어할 수 있는데, 알루미나의 경우 주로 판상형으로 입자가 성장하게 되며, 이때 salt의 ionic strength에 따라 판상형으로 성장하는 결정의 성장 속도를 제어하는 것이 가능하다. 본 연구에서는 NaCl, $Na_2SO_4$, $Na_3PO_4$를 이용하여 ionic strength가 다른 다양한 salt 조건에서 알루미나 입자를 성장시켰으며, 이들이 알루미나 결정 성장에 미치는 영향과 온도, 농도 변화에 따라 형성되는 알루미나의 크기 및 형상의 변화에 관하여 연구하였다.

Keywords

References

  1. Somasundran, P., Markovic, B., Krishnakumar, S. and Yu, X., Birdi, K. S. (Ed.), Handbook of Surface and Colloid Chemistry, CRC Press, Boca Raton, FL, 127-192(1997).
  2. Maile, F. J., Pfaff, G. and Reynders, P., "Effect Pigments - Past, Present and Future," Prog. Org. Coat., 54(3), 150-163(2005). https://doi.org/10.1016/j.porgcoat.2005.07.003
  3. Eppler, R. A., "Selecting Ceramic Pigments," Materials & Equipment/Whitewares: Ceramic Engineering and Science Proceedings, 8(11/12), 1139-1149(2008).
  4. Bonderer, L. J., Feldman, K. and Gauckler, L. J., "Platelet-reinForced Polymer Matrix Composites by Combined Gel-casting and Hotpressing. Part I: Polypropylene Matrix Composites," Compos. Sci. Technol., 70(13), 1958-1965(2010). https://doi.org/10.1016/j.compscitech.2010.07.014
  5. Oner Ekiz, O., Dericioglu, A. F. and Kakisawa, H., "An Efficient Hybrid Conventional Method to Fabricate Nacre-like Bulk Nano-laminar Composites," Materials Science and Engineering: C, 29(6), 2050-2054(2009). https://doi.org/10.1016/j.msec.2009.04.001
  6. Gurbuz, S. N. and Dericioglu, A. F., "Effect of Reinforcement Surface Functionalization on the Mechanical Properties of Nacrelike Bulk Lamellar Composites Processed by a Hybrid Conventional Method," Materials Science and Engineering: C, 33(4), 2011-2019(2013). https://doi.org/10.1016/j.msec.2013.01.013
  7. Bell, N. E., Cho, S. B. and Adair, J. H., "Size and Shape Control of $\alpha$-Alumina Particles Synthesized in 1,4-Butanediol Solution by $\alpha$-Alumina and $\alpha$-Hematite Seeding," J. Am. Ceram. Soc., 81(6), 1411-1420(1998). https://doi.org/10.1111/j.1151-2916.1998.tb02498.x
  8. Chen, S. F., Yu, S. H., Wang, T. X., Jiang, J., Colfen, H., Hu, B. and Yu, B., "Polymer-Directed Formation of Unusual $CaCO_3$ Pancakes with Controlled Surface Structures," Adv. Mater., 17(12), 1461-1465(2005). https://doi.org/10.1002/adma.200401957
  9. Garcia, S. P. and Semancik, S., "Controlling the Morphology of Zinc Oxide Nanorods Crystallized from Aqueous Solutions: the Effect of Crystal Growth Modifiers on Aspect Ratio," Chem. Mater., 19(16), 4016-4022(2007). https://doi.org/10.1021/cm061977r
  10. Rajagopal, S., Lee, H. M., Lee, K. and Kim, C. K., "Hydrothermal Synthesis of One-dimensional Tungsten Oxide Nanostructures Using Cobalt Ammonium Sulfate as a Structure-directing Agent," Korean J. Chem. Eng., 30(10), 1833-1835(2013). https://doi.org/10.1007/s11814-013-0146-0
  11. Danchevskaya, M. N., Ivakin, Y. D., Torbin, S. N. and Muravieva, G. P., "The Role of Water Fluid in the Formation of Fine-crystalline Oxide Structure," J. Supercrit. Fluids, 42(3), 419-424(2007). https://doi.org/10.1016/j.supflu.2007.03.007
  12. Li, W. J., Shi, E. W. and Yin, Z. W., "Growth Habit of Rutile and $\alpha$-$Al_2O_3$ Crystals," J. Cryst. Growth, 208(1), 546-554(2000). https://doi.org/10.1016/S0022-0248(99)00419-4
  13. Lee, S. G., Park, H. C., Kang, B. S., Seo, G. S., Hong, S. S. and Park, S. S., "Synthesis of $\alpha$-alumina Platelets from $\gamma$-alumina With and Without Microwaves," Materials Science and Engineering: A, 466(1), 79-83(2007). https://doi.org/10.1016/j.msea.2007.02.041
  14. Seo, G.-S., Lee, S.-G., Ahn, B.-H., Ju, C.-S., Hong, S.-S., Park, S.-S. and Lee, G. D., "Effect of Metal Fluoride on the Formation of $\alpha$-Alumina Particles," Korea Chem. Eng. Res., 48(5), 627-631(2010).
  15. Zhu, L.-H., Huang, Q.-W. and Liu, W., "Synthesis of Plate-like $\alpha$-$Al_2O_3$ Single-crystal Particles in NaCl-KCl Flux Using $Al(OH)_3$ Powders and Starting Materials," Ceram. Int., 34(7), 1729-1733(2008). https://doi.org/10.1016/j.ceramint.2007.05.011
  16. Zhu, L.-H. and Huang, Q.-W., "Morphology Control of $\alpha$-$Al_2O_3$ Platelets by Molten Salt Synthesis," Ceram. Int., 37(1), 249-255(2011). https://doi.org/10.1016/j.ceramint.2010.09.021
  17. Hashimoto, S., Zhang, S., Lee, W. E. and Yamaguchi, A., "Synthesis of Magnesium Aluminate Spinel Platelets from $\alpha$-Alumina Platelet and Magnesium Sulfate Precursors," J. Am. Ceram. Soc., 86(11), 1959-1961(2003). https://doi.org/10.1111/j.1151-2916.2003.tb03589.x
  18. Tian, Z. R., Voigt, J. A., Liu, J., Mckenzie, B., Mcdermott, M. J., Rodriguez, M. A. and Xu, H., "Complex and Oriented ZnO Nanostructures," Nat. Mater., 2(12), 821-826(2003). https://doi.org/10.1038/nmat1014
  19. Chen, S. F., Yu, S. H., Jiang, J., Li, F. and Liu, Y., "Polymorph Discrimination of $CaCO_3$ Mineral in an Ethanol/water Solution: Formation of Complex Vaterite Superstructures and Aragonite Rods," Chem. Mater., 18(1), 115-122(2006). https://doi.org/10.1021/cm0519028