DOI QR코드

DOI QR Code

Characteristics of Continuous Preparation of ZnO Powder in a Micro Drop/bubble Fluidized React

마이크로 액적/기포 유동반응기에서 ZnO 입자의 연속제조 특성

  • Lee, Seung Ho (Department of Chemical Engineering, Chungnam National University) ;
  • Yang, Si Woo (Department of Chemical Engineering, Chungnam National University) ;
  • Lim, Dae Ho (Department of Chemical Engineering, Chungnam National University) ;
  • Yoo, Dong Jun (Department of Chemical Engineering, Chungnam National University) ;
  • Lee, Chan Ki (Advanced Materials & Processing Center, Institute for Advanced Engineering) ;
  • Kang, Gyung Min (Zentec) ;
  • Kang, Yong (Department of Chemical Engineering, Chungnam National University)
  • Received : 2015.04.20
  • Accepted : 2015.05.19
  • Published : 2015.10.01

Abstract

Characteristics of continuous preparation of ZnO powder were investigated in a micro drop/bubble fluidized reactor of which diameter and height were 0.03 m and 1.5 m, respectively. The flow rate of carrier gas for transportation of precursors to the reactor was 6.0 L/min and the concentration of Zn ion in the precursor solutions was 0.4 mol/L, respectively. Effects of reaction temperature (973 K~1,273 K) and flow rate of micro bubbles (0~0.4 L/min) on the pore characteristics of prepared ZnO powder were examined. The optimum reaction temperature for the maximum porosity in the ZnO powder was 1,073 K within this experimental condition. The mean size of ZnO powder prepared continuously in the reactor decreased but the surface of the powder became smooth, with increasing reaction temperature. The injection of micro bubbles into the reactor could enhance the formation of pores in the powder effectively, and thus the mean BET surface area could be increased by up to 58%. The mean size of prepared ZnO powder was in the range of $1.25{\sim}1.75{\mu}m$ depending on the reaction temperature.

직경이 0.03 m이고 높이가 1.5 m인 마이크로 액적/기포 유동반응기에서 ZnO 입자의 연속제조 특성을 검토하였다. 마이크로 액적을 운반하는 기체의 속도는 6.0 L/min, 전구체 중 Zn이온의 농도는 0.4 mol/L로 유지하였다. ZnO 입자의 합성을 위한 반응의 온도(973 K~1,273 K)와 마이크로 기포의 유속 (0~0.4 L/min)이 합성된 ZnO 입자의 기공 특성에 미치는 영향을 고찰하였다. 본 연구의 실험범위에서 ZnO 입자의 합성온도는 1,073 K가 합성된 ZnO 입자의 기공을 극대화하는데 최적이었다. 또한, 반응기에서 연속 제조되는 ZnO 입자의 평균크기는 반응온도가 증가함에 따라 감소하였으며 입자의 표면은 점점 매끄럽게 단순화되었다. 반응기 내부에 마이크로 기포를 유입함으로써 유입하지 않는 경우와 비교하여 합성된 ZnO 입자 내부에 기공을 효과적으로 형성시킬 수 있었으며, 평균 BET면적을 58%까지 증가시킬 수 있었다. 마이크로 액적/기포 유동반응기를 사용하여 연속 합성한 ZnO 입자의 평균입도는 반응온도에 따라 $1.25{\sim}1.75{\mu}m$이었다.

Keywords

References

  1. Sobana, N. and Swaminathan, "The Effect of Operational Parameters on the Photocatalytic Degradation of Acid Red 18 by ZnO," Separation and purification Technol., 56, 101-107(2007). https://doi.org/10.1016/j.seppur.2007.01.032
  2. Morkoc, H. and Ozgur, U., Zinc Oxide: Fundamentals, Materials and Device Technology, Wiley, Germany(2009).
  3. Xu, T., Wu, G., Zhang, G. and Hao, Y., "The Compatibility of ZnO Piezoelectric Film with Micromachining Process," Sens. Actuators A : Phys., 104, 61-67(2003). https://doi.org/10.1016/S0924-4247(02)00484-3
  4. Shibata, T., Unno, K., Makino, E., Ito, Y. and Shimada, S., "Characterization of Sputtered ZnO Thin Film as Sensor and Actuator for Diamond AFM Probe," Sens, Actuators A : Phys., 102, 106-113(2002). https://doi.org/10.1016/S0924-4247(02)00339-4
  5. Gomey, H. and Olvera, M. L., "Ga-doped ZnO thin films: Effect of Deposition Temperature, Dopant Concentration, and Vacuumthermal Treatment on the Electrical, Optical, Structural and Morphological Properties," Mat. Sci. Eng., B 134, 20-26(2006). https://doi.org/10.1016/j.mseb.2006.07.039
  6. Li, D. and Haneda, H., "Morphologies of Zinc Oxide Particles and Their Effects on Photocatalysis," Chemosphere, 51, 129-137(2003). https://doi.org/10.1016/S0045-6535(02)00787-7
  7. Heo, J. H., You, M. S. and In, S. H., "A study on Formation of Vertically Aligned ZnO Nanorods Arrays on a Rough FTO Transparent Electrode by the Introduction of $TiO_2$ Crystalline Nano-sol Blocking Interlayer," Korean Chem. Eng. Res., 51, 774-779(2013). https://doi.org/10.9713/kcer.2013.51.6.774
  8. Zhang, S. C. and Li, X. G., "Preparation of ZnO Particles by Precipitation Transformation Method and Its Inherent Formation Mechanisms," Colloids and Surfaces A: Physicochem. Eng. Aspects, 226, 35-44(2003). https://doi.org/10.1016/S0927-7757(03)00383-2
  9. Wang, Y., Zhang, C., Bi, S. and Luo G., "Preparation of ZnO Nanoparticles Using the Direct Precipitation Method in a Membrane Dispersion Micro-structure Reactor," Powder Technol., 202, 130-136(2010). https://doi.org/10.1016/j.powtec.2010.04.027
  10. Lu, C. H. and Yeh, C. H., "Influence of Hydrotheral Conditions on the Morphology and Particle Size of Zinc Oxide Powder," Ceramics International, 26, 351-357(2000). https://doi.org/10.1016/S0272-8842(99)00063-2
  11. Music, S., Dragcevic, S. and Ivanda, M., "Precipitation of ZnO Particles and Their Properties," Materials Letters, 59, 2388-2393 (2005). https://doi.org/10.1016/j.matlet.2005.02.084
  12. Colon, G., Hidalgo, M. C., Navio, J. A., Pulido Melian, E., Gonzalez Diaz, O. and Dona Rodriguez, J. M., "Highly Photoactive ZnO by Amine Capping-assisted Hydrothermal Treatment," Applied Catalysis B: Environmental, 83, 30-38(2008). https://doi.org/10.1016/j.apcatb.2008.01.033
  13. Lu, C. H., Lai, Y. C. and Kale, R. B., "Influence of Alkaline Sources on the Structural and Morphological Properties of Hydrothermally Derived Zinc Oxide Powders," Journal of Alloys and Compounds, 477, 523-528(2009). https://doi.org/10.1016/j.jallcom.2008.10.076
  14. Lai, Y., Meng, M., Yu, Y., Wang, X. and Ding, T., "Photoluminescence and Phtocatalysis of the Flower-like Nano-ZnO Photocatalysts Prepared by a Facile Hydrothermal Method with or Without Ultrasonic Assistance," Applied Catalysis B: Environmental, 105, 335-345(2011). https://doi.org/10.1016/j.apcatb.2011.04.028
  15. Yu, J. G. and Yu, X. X., "Hydrothermal Synthesis and Photocatalytic Activity of Zinc Oxide Hollow Spheres," Environmental Sci. & Technol., 42, 4902-4907(2008). https://doi.org/10.1021/es800036n
  16. Thongrom, B., Amornpitoksuk, P., Suwanboon, S. and Baltrusaitio, J., "Photocatalytic Degradation of Dye by Ag/ZnO Prepared by Reduction of Tollen's Reagent the Ecotoxicity of Degraded Products," Korean J. Chem. Eng., 31, 587-592(2014). https://doi.org/10.1007/s11814-013-0262-x
  17. Chaudhari, S.P., Bodade, A.B. and Chaudhari, G.N., "Synthesis, Characterization and Recital of Nest-like Zinc Oxide Photocatalyst," Korean J. Chem. Eng., 30, 2001-2006(2013). https://doi.org/10.1007/s11814-013-0151-3
  18. Yang, J., Lin, Y. and Meng, Y., "Effects of Dye Etching on the Morphology and Performance of ZnO Nanorod Dye-sensitized Solar Cells," Korean J. Chem. Eng., 30, 2026-2029(2013). https://doi.org/10.1007/s11814-013-0133-5
  19. Kang, H. W., Lim, S. N. and Park, S. B., "Effect of Tri-doping on $H_2$ Evolution Under Visible Light Irradiation on $SrTiO_3$ : Ni/Ta/La Prepared by Spray Pyrolysis from Polymeric Precursor," Hydrogen Energy, 37, 10539-10548(2012). https://doi.org/10.1016/j.ijhydene.2012.04.047
  20. Jung, D. S., Park, S. B. and Kang, Y. C., "Design of Particles by Spray Pyrolysis and Recent Progress in Into Application," Korean J. Chem. Eng., 27, 1621-1645(2010). https://doi.org/10.1007/s11814-010-0402-5
  21. Li, D. and Haneda, H., "Synthesis of Nitrogen-containing ZnO Powders by Spray Pyrolysis and Visible-light Photocatalysis in Gas-phase Acetaldehyde Decomposition," Journal of Photochemistry and Photobiology A: Chemistry, 155, 171-178(2003). https://doi.org/10.1016/S1010-6030(02)00371-4
  22. El Hichou, A., Addou, M., Ebothe, J. and Troyon, M., "Influence of Deposition Temperature (TS), Air Flow Rate (f ) and Precursors on Cathodoluminescence Properties of ZnO Thin Films Prepared by Spray Pyrolysis," Journal of Luminescence, 113, 183-190(2005). https://doi.org/10.1016/j.jlumin.2004.09.123
  23. Milosevic, O., Uskokovic, D., Karanovic, L. J., Tomasevic-canovic, M. and Tronterj, M., "Synthesis of ZnO-based Varistor Precursor Powders by Means of the Reaction Spray Process," Journal of materals science, 28, 5211-5217(1993). https://doi.org/10.1007/BF00570066
  24. Cullity, B. D., Element of X-ray Diffraction, Addison-Wesley Pub. Co. Reading, MA(1978).
  25. Rouquerol, F., Rouquerol, J. and Sing, K., Adsorption by Powders and Porous Solid: Principles, Methodology and Applications, AP, San Diego(1999).
  26. Onsuratoom, S., Puangperch, T. and Chavadej, S. "Comparative Investigation of Hydrogen Production Over Ag-, Ni-, and Cu- Loaded Mesoporous-assembled $TiO_2$-$ZrO_2$ Mixed Oxide Nanocrystal Photocatalysts," Chem. Eng. J., 173, 667-675(2011). https://doi.org/10.1016/j.cej.2011.08.016
  27. Yu, H. F. and Chou, H. Y., "Preparation and Characterization of Dispersive Carbon-coupling ZnO Photocatalysts," Powder Technol., 233, 201-207(2013). https://doi.org/10.1016/j.powtec.2012.09.004
  28. Kunii, D. and Levenspiel, O., Fluidization Engineering, Butterwerth-Henemann, Stonehorn, MA(1991).
  29. Serpone, N., Maruthamuthu, P., Pichat, P., Pelizzetti, E. and Hidaka, H., "Exploiting the Interparticle Electron Transfer Process in the Photocatalysed Oxidation of Phenol, 2-chlorophenol and Pentachlorophenol: Chemical Evidence for Electron and Hole Transfer Between Coupled Semiconductors," Journal of Photochemistry and Photobiology A: Chemistry, 85, 247-255(1995). https://doi.org/10.1016/1010-6030(94)03906-B

Cited by

  1. Nitrate-Citrate 혼합 전구체로부터 ZnO 입자의 합성반응 특성 vol.54, pp.3, 2016, https://doi.org/10.9713/kcer.2016.54.3.299
  2. 미세액적 유동반응기 공정에서 연속제조된 나노구조 SiO2:Zn 원환형 입자의 특성 vol.56, pp.4, 2018, https://doi.org/10.9713/kcer.2018.56.4.585