DOI QR코드

DOI QR Code

토양 방선균 유래 Herbicidin의 제초활성

Herbicidal Activity of Herbicidin from a Strain of Soil Actinomycete Streptomyces scopuliridis

  • 원옥재 (충남대학교 식물자원학과) ;
  • 김영태 (충남대학교 식물자원학과) ;
  • 김재덕 (한국화학연구원 친환경신물질연구센터) ;
  • 최정섭 (한국화학연구원 친환경신물질연구센터) ;
  • 고영관 (한국화학연구원 친환경신물질연구센터) ;
  • 박기웅 (충남대학교 식물자원학과)
  • Won, Ok Jae (Department of Crop Science, Chungnam National University) ;
  • Kim, Young Tae (Department of Crop Science, Chungnam National University) ;
  • Kim, Jae Deok (Eco-friendly and New Materials Research Center, Korea Research Institute of Chemical Technology) ;
  • Choi, Jung Sup (Eco-friendly and New Materials Research Center, Korea Research Institute of Chemical Technology) ;
  • Ko, Young Kwan (Eco-friendly and New Materials Research Center, Korea Research Institute of Chemical Technology) ;
  • Park, Kee Woong (Department of Crop Science, Chungnam National University)
  • 투고 : 2015.08.20
  • 심사 : 2015.09.10
  • 발행 : 2015.09.30

초록

본 연구를 통해 토양 방선균 유래 제초활성물질을 대상으로 제초제로서의 적용 가능성 여부를 확인하기 위하여 수행되었다. 잡초에 대한 발아와 경엽처리에 대한 약효시험 결과, 종자 발아는 100 ppm 수준으로 처리하고 경엽에는 2,000 ppm 수준으로 처리해야 저해효과를 나타냈다. 작물에 대한 시험 결과, 오이는 발아억제가 이루어지지 않았으며 벼는 발아와 생육 모두 50% 내외의 저해를 보였다. 그 외의 모든 시험 작물 초종은 처리 농도에 따른 민감한 반응을 보였다. 즉 토양방선균으로부터 발굴한 천연제초활성물질은 선택성 제초제로의 개발은 어려워 보이나 비선택성 제초제로의 개발은 가능할 것으로 보인다. 한편 처리방법에 따른 농도별 시험 결과, 패트리디쉬에서 실험의 경우 모든 잡초종이 농도에 민감히 반응하였으며, $GR_{50}$값은 1-2 ppm 정도를 보였다. 그리고 토양처리 효과에 따른 발아억제 및 생육저해 효과는 쌍떡잎식물에서 보다 민감한 반응을 보였고, 털비름의 경우 1,000 ppm에서도 85%의 생육저해를 보였다. 경엽처리에 따른 생육저해 조사시 2,000 ppm에서 피는 고사하지 않았으나 나머지 초종은 모두 고사하였고, 특히 털비름은 6.25 ppm의 농도에서도 고사하였다. 경엽처리에 따른 대표적인 반응으로 바랭이는 잎의 꼬임현상을 나타냈고, 어저귀는 잎이 변색되었다. 토양처리는 그 효과가 경미하고 일정기간 경과후에 재생되어 방제효과가 부족하였으며, 경엽처리의 경우 피를 제외한 잡초종등이 2,000 ppm에서 방제가 가능할 것으로 보인다. 또한 모든 결과를 종합 할 때 화본과잡초 보다 광엽잡초에서 민감한 발아억제 및 생육저해 효과를 볼 수 있었다. 따라서 토양 방선균 유래 제초활성 후보물질은 비선택성 경엽처리제로서의 개발이 상대적으로 유망할것으로 판단되었다. 한편 화본과 잡초에 대한 저해 효과가 부족함으로 추후 다른 제제와 혼합함으로써 화본과 잡초도 동시에 방제할 수 있는 기술의 개발이 필요할 것이다.

This study was conducted to evaluate the effect of herbicidin, new natural herbicidal substances, derived from soil actinomycetes Streptomyces scopuliridis. Several weed species were subjected to examine the germination inhibition and herbicidal activity at the concentration from 100 to 2,000 ppm. There was no selectivity in germination inhibition and herbicidal activity against crops. Germination of Echinochloa oryzoides, Digitaria ciliaris, Abutilon theophrasti and Amaranthus retroflexus was inhibited completely when 7.81 ppm of extract was treated in petri dish. Pre-emergence application of herbicidin in soil condition showed low inhibition against weeds. However, post application of herbicidin in green house resulted in the necrosis of weeds at the concentration of 2,000 ppm. A. retroflexus was sensitive to herbicidin at the low concentration of 62.5 ppm, whereas E. oryzoides was tolerant to lower concentration of herbicidin until it became withered at the concentration of 2,000 ppm. In conclusion, herbicidal substances derived from S. scopuliridis herbicidin, which is consisted with herbicidin A and B, have dominant effect on germination and growth inhibition. On the other hand, herbicidin was insufficient to control gramineous weeds. In future, it will be needed to develop the combination of herbicidin with other herbicide or compounds to control gramineous weeds as well.

키워드

참고문헌

  1. Arai, M., Haneishi, T., Kitahara, N., Enikita, R. and Kawakubo, K. 1976. Herbicidins A and B, two new antibiotics with herbicidal activity. I. Producing organism and biological activities. J. antibiot. 29(9):863-869. https://doi.org/10.7164/antibiotics.29.863
  2. Ebert, E., Leist, K.H. and Mayer, D. 1990. Summary of safety evaluation toxicity studies of glufosinate ammonium. Food Chem Toxicol. 28(5):339-49. https://doi.org/10.1016/0278-6915(90)90108-Y
  3. Fushimi, S., Nishikawa, S., Mito, N., Ikemoto, M., Sasaki, M., et al. 1989. Studies on a new herbicidal antibiotic, homoalanosine. J. Antibiot. 42(9):1370-1378. https://doi.org/10.7164/antibiotics.42.1370
  4. Iwai, Y. and Takahashi, T. 1992. Seletion of microbial sources of bioactive compounds. Springer, pp. 281-302. In: Omura, S. (Ed.). The Search for Bioactive Compounds from Microorganisms. Spring-Verlag New York, USA.
  5. Joseph, B., Sankarganesh, P., Edwin, B.T. and Raj, S.J. 2012. Endophytic streptomycetes from plants with novel green chemistry. Int. J. Biol. Chem. 6(2):42-52. https://doi.org/10.3923/ijbc.2012.42.52
  6. Kim, J.C. 2009. Research and development trends of the biological pesticide. Bioin-Special Zine. 10:1-20. (In Korean)
  7. Kim, W.G., Kim, J.P., Kim, C.J. and You, I.D. 1996. A herbicidal nucleoside compound isolated from Streptomyces tubercidicus ME-9189. Kor. J. Appl. Microbiol. Biotechnol. 24(1):82-86. (In Korean)
  8. Lee, B.Y., Kim, J.D., Kim, Y.S., Ko, Y.K., Yon, G.H., et al. 2013. Identification of Streptomyces scopuliridis KR-001 and its herbicidal characteristics. Weed Turf. Sci. 2(1):38-46. (In Korean) https://doi.org/10.5660/WTS.2013.2.1.038
  9. Lee, H.B., Kim, C.J., Kim, J.S., Hong, K.S. and Cho, K.Y. 2003. A bleaching herbicidal activity of methoxyhygromycin (MHM) produced by an actinomycete strain Streptomyces sp. 8E-12. Lett. Appl. Microbiol. 36(6):387-91. https://doi.org/10.1046/j.1472-765X.2003.01327.x
  10. Nakajimam, M., Kazuko, I., Takamatsu, Y., Kinoshita, T., Okazaki, T., et al. 1991. Hydantocidin: a new compound with herbicidal activity from Streptomyces hygroscopicus. J. Antibiot. 44(3):293-300. https://doi.org/10.7164/antibiotics.44.293
  11. Omura, S., Murata, M., Hanaki, H., Hinotozawa, K., Oiwa, R., et al. 1984. Phosalacine, a new herbicidal abtibiotic containing phosphinothricin. fermentation, isolation. biological activity and mechanism of action. J. Antibiot. 37(8):829-835. https://doi.org/10.7164/antibiotics.37.829
  12. Schatz, A., Bugie, E. and Waksman, S.A. 1944. Streptomycin, a subastance exhibiting antibiotic activity against gram positive and gram negative bacteria. Exp. Biol. Med. 55:66-69. https://doi.org/10.3181/00379727-55-14461
  13. Seefeldt, S.S., Jensen, J.E. and Feurst, E.P. 1995. Log-logistic analysis of herbicide dose-response relationships. Weed Tech. 9:218-227. https://doi.org/10.1017/S0890037X00023253
  14. Sekizawa, Y. and Takematsu, T. 1982. How to discover new antibiotics for herbicidal use. pp 261-268. In: Miyamoto, J. and Kearney, P.C. (Eds.). Natural products: Proceedings of the 5th International Congress of pesticide chemistry. Pergamon press, Kyoto, Japan.
  15. Tachibana, K. and Kaneko, K. 1986. Development of a new herbicide, bialaphos. J. of pestic Sci. 11(2):297-304. (In Japanese) https://doi.org/10.1584/jpestics.11.297
  16. Umezawa, H. 1982. Genetics, biosyntheses, actions & new substances: Proceedings, an International Conference on Trends in Antibiotic Research. Japan Antibiotics Research Association. Tokyo, Japan.