DOI QR코드

DOI QR Code

Preparation of diffusion dialysis membrane for acid recovery via a phase-inversion method

  • Khan, Muhammad Imran (Lab of Functional Membranes, School of Chemistry and Material Science, University of Science and Technology of China) ;
  • Wu, Liang (Lab of Functional Membranes, School of Chemistry and Material Science, University of Science and Technology of China) ;
  • Hossain, Md. Masem (Lab of Functional Membranes, School of Chemistry and Material Science, University of Science and Technology of China) ;
  • Pan, Jiefeng (Lab of Functional Membranes, School of Chemistry and Material Science, University of Science and Technology of China) ;
  • Ran, Jin (Lab of Functional Membranes, School of Chemistry and Material Science, University of Science and Technology of China) ;
  • Mondal, Abhishek N. (Lab of Functional Membranes, School of Chemistry and Material Science, University of Science and Technology of China) ;
  • Xu, Tongwen (Lab of Functional Membranes, School of Chemistry and Material Science, University of Science and Technology of China)
  • Received : 2014.12.29
  • Accepted : 2015.06.02
  • Published : 2015.09.25

Abstract

Herein, the preparation of anion exchange membrane (AEM) from brominated poly(2,6-dimethyl 1,6-phenylene oxide) BPPO and dimethylaniline (DMA) by phase-inversion process is reported. Anion exchange membranes (AEMs) are prepared by varying the DMA contents. Prepared AEMs show high thermal stability, water uptake (WR) around 202% to 226%, dimensional change ratios of 1.5% to 2.6% and ion exchange capacities (IECs) of 0.34 mmol/g to 0.82 mmol/g with contact angle of $59.18^{\circ}$ to $65.15^{\circ}$. These membranes are porous in nature as confirmed by SEM observation. The porous property of membranes are important as it could reduce the resistance of transportation of ions across the membranes. They have been used in diffusion dialysis (DD) process for recovery of hydrochloric acid (HCl) from the mixture of HCl and ferrous chloride ($FeCl_2$). Presence of $-N+(CH_3)_2C_6H_5Br^-$ as a functional group in membrane matrix facilitates its applications in DD process. The dialysis coefficients of hydrochloric acid ($U_H$) of the membranes are in range of 0.0016 m/h to 0.14 m/h and the separation factors (S) are in range of 2.09 to 7.32 in the $HCl/FeCl_2$ system at room temperature. The porous membrane structure and presence of amine functional group are responsible for the mechanism of diffusion dialysis (DD).

Keywords

Acknowledgement

Supported by : National Science Foundation of China

References

  1. Agrawal, A. and Sahu, K.K. (2009), "An overview of recovery of acid from spent acidic solutions from steel, from steel and electroplating industries", J. Hazards. Mater., 171(1-3), 61-75. https://doi.org/10.1016/j.jhazmat.2009.06.099
  2. Berezina, N.P., Kononenko, N.A., Dyomina, O.A. and Gnusin, N.P. (2008), "Characterization of ion-exchange membrane materials: properties vs. structure", Adv. Colloid Interf. Sci., 139(1-2), 3-28. https://doi.org/10.1016/j.cis.2008.01.002
  3. Elmidaoui, A., Molenat, J. and Gavach, C. (1991), "Competitive diffusion of hydrochloric acid and sodium chloride through an acid dialysis membrane", J. Membr. Sci., 55(1-2), 79-98. https://doi.org/10.1016/S0376-7388(00)82328-5
  4. Gao, L., Tang, B.B. and Wu, P.Y. (2009), "An experimental investigation of evaporation time and the relative humidity on a novel positively charged ultrafiltration membrane via dry-wet phase inversion", J. Membr. Sci., 326(1), 168-177. https://doi.org/10.1016/j.memsci.2008.09.048
  5. Kang, M.-S., Yoo, K.-S. and Moon, S.-H. (2001), "Alumped parameter model to predict hydrochloric acid recovery in diffusion dialysis", J. Membr. Sci., 188(1), 61-70. https://doi.org/10.1016/S0376-7388(01)00372-6
  6. M.Y., Nagarale, R.K., Kittur, A.A. and Kulkarni, S.S. (2006), "Ion-exchange membranes preparative methods for electrodialysis and fuel cell applications", Desalination, 197(1-3), 225-246. https://doi.org/10.1016/j.desal.2006.01.019
  7. Klaysom, C., Moon, S.H., Ladewig, B.P., Lu, G.Q.M. and Wang, L.Z. (2011), "Preparation of porous ion-exchange membranes (IEMs) and their characteristics", J. Membr. Sci., 371(1-2), 37-44. https://doi.org/10.1016/j.memsci.2011.01.008
  8. Klaysom, C., Marschall, R., Moon, S.H., Ladewig, B.P., Max Lu, G.Q. and Wang, L.Z. (2011), "Preparation of porous composite ion-exchange membranes for desalination application", J. Mater. Chem., 21(20), 7401-7409. https://doi.org/10.1039/c0jm04142d
  9. Kujawski, W. and Narebska, A. (1991), "Transport of electrolytes across charged membranes. Part IV. Frictional interations of the neutral and alkaline permeants and the permeability/reflection phenomena", J. Membr. Sci., 56(1), 99-112. https://doi.org/10.1016/0376-7388(91)85017-Y
  10. Luo, J., Wu, C., Xu, T. and Wu, Y. (2011), "Diffusion dialysis-concept, principle and applications", J. Membr. Sci., 366(1-2), 1-6. https://doi.org/10.1016/j.memsci.2010.10.028
  11. Luo, J.Y., Wu, C.M., Wu, Y.H. and Xu, T.W. (2010), "Diffusion dialysis of hydrochloric acid at different temperature using PPO-$SiO_2$ hybrid anion exchange membranes", J. Membr. Sci., 347(1-2), 240-249. https://doi.org/10.1016/j.memsci.2009.10.029
  12. Narebska, A., Koter, S., Warszawski, A. and Le, T.T. (1995), "Irreversible thermodynamics of transport across charged membranes. Part VI. Frictional interactions and coupling effects in transport of acid through anion exchange membranes", J. Membr. Sci., 106(1-2), 39-48. https://doi.org/10.1016/0376-7388(95)00075-N
  13. Negro, C., Blanco, M.A., Lopez-Mateos, F. and DeJong, A.M.C.P. (2001), "Free acids and chemicals recovery from stainless steel pickling baths", Sep. Sci. Technol., 36(7), 1543-1556. https://doi.org/10.1081/SS-100103887
  14. Oh, S.J., Moon, S-H. and Davis, T. (2000), "Effects of metals ions on diffusion dialysis of inorganic acids", J. Membr. Sci., 169(1), 95-105. https://doi.org/10.1016/S0376-7388(99)00333-6
  15. Palaty, Z. and Zakova. A. (2006), "Competitive transport of hydrochloric acid and zinc chloride through polymeric anion-exchange membrane", J. Appl. Polym. Sci., 101(3), 1391-1397. https://doi.org/10.1002/app.22748
  16. Palaty, Z. and Bendova, H. (2009), "Separation of HCl+$FeCl_2$ mixture by anion-exchange membrane", Sep. Sci. Technol., 66(1-7), 45-50.
  17. Paddison, S.J., Pivovar, B.S. and Paul, R. (2002), "The nature of proton transport in fully hydrated Nafion", Phys. Chem. Chem. Phys., 4(7), 1158-1163. https://doi.org/10.1039/b109792j
  18. Strathmann, H. (2004), Ion Exchange Membrane Separation Processes, Elesevier, Amsterdam, Netharland.
  19. Stancheva, K.A. (2008), "Application of dialysis, oxide commun", 31, 758-775.
  20. Sun, F.J., Wu, C.M., Wu, Y.H. and Xu, T.W. (2014), "Porous BPPO-based membranes modified by multisilicon copolymer for application in diffusion dialysis", J. Membr. Sci., 450, 103-110. https://doi.org/10.1016/j.memsci.2013.08.046
  21. Wijmans, J.G. and Baker, R.W. (1995), "The solution-diffusion model: a review", J. Membr. Sci., 107(1-2), 1-21. https://doi.org/10.1016/0376-7388(95)00102-I
  22. Wu, Y.H., Wu, C.M., Xu, T.W., Lin, X.C. and Fu, Y.X. (2009), "Novel silica/poly(2,6-dimethyl-1,4-phenylene oxide) hybrid membranes for alkaline fuel cells: Effect of heat treatment", J. Membr. Sci., 338(1-2), 51-60. https://doi.org/10.1016/j.memsci.2009.04.012
  23. Wu, C.M., Wu, Y.H., Luo, J.Y., Xu, T.W. and Fu, Y.X. (2010a), "Anion exchange hybrid membranes from PVA and multi-alkoxysilicon copolymer tailored for different dialysis process", J. Membr. Sci., 356(1-2), 96-104. https://doi.org/10.1016/j.memsci.2010.03.035
  24. Wu, H.Q., Tang, B.B. and Wu, P.Y. (2010b), "Novel ultrafiltration membranes prepared from a multi-walled carbon nano tubes/polymer composite", J. Membr. Sci., 362(1-2), 374-383. https://doi.org/10.1016/j.memsci.2010.06.064
  25. Wu, Y.H., Luo, J.Y., Wu, C.M., Xu, T.W. and Fu, Y.X. (2011), "Bionic multisilicon copolymers used as novel cross-linking agent for preparing anion exchange hybride membranes", J. Phys. Chem. B, 115(20), 6474-6483. https://doi.org/10.1021/jp1122807
  26. Wu, Y.H., Luo, J.Y., Zhao, L.L., Zhang, G.C., Wu, C.M. and Xu, T.W. (2013), "QPPO/PVA anion exchange hybrid membranes from double crosslinking agents for acid recovery", J. Membr. Sci., 428, 95-103. https://doi.org/10.1016/j.memsci.2012.10.018
  27. Xu, T.W. (2002), "Electrodialysis processes with bipolar membranes (EDBM) in environment protection: a review", Resour. Conserv. Recy., 37(1), 1-22. https://doi.org/10.1016/S0921-3449(02)00032-0
  28. Xu, T.W. (2005), "Ion exchange membranes: State of their development and perspective", J. Membr. Sci., 263(1-2), 1-29. https://doi.org/10.1016/j.memsci.2005.05.002
  29. Xu, T.W. and Yang, W.H. (2001), "Sulfuric acid recovery from titanium white (pigment) waste liquor using diffusion dialysis with a new series of anion exchange membranes static runs", J. Membr. Sci., 183(2), 193-200. https://doi.org/10.1016/S0376-7388(00)00590-1
  30. Xu, T.W. and Yang, W.H. (2004), "Turning the diffusion dialysis performance by surface cross-linking of PPO anion exchange membranes-simultaneous recovery of sulfuric acid and nickel from electrolysis spent liquor of relatively low acid concentration", J. Hazard. Mater., 109(1-3), 157-164. https://doi.org/10.1016/j.jhazmat.2004.03.016
  31. Xu, T.W., Wu, D. and Wu, L. (2008), "Poly(2,6-dimethyl-1,4-phenylene oxide) (PPO)-a versatile starting polymer for proton conductive membranes (PCMs)", Prog. Polym. Sci., 33(9), 894-915. https://doi.org/10.1016/j.progpolymsci.2008.07.002
  32. Xu, J., Lu, S. and Fu, D. (2009), "Recovery of hydrochloric acid from waste acid solution by diffusion dialysis", J. Hazard. Mater., 165(1-3), 832-837. https://doi.org/10.1016/j.jhazmat.2008.10.064
  33. Yan, J.L. and Hickner, M.A. (2010), "Anion exchange membranes by bromination of benzylmethylcontaining poly(sulfone)s", Macromolecules, 43(5), 2349-2356. https://doi.org/10.1021/ma902430y
  34. Zhang, S.L., Xu, T.W. and Wu, C.M. (2006), "Synthesis and characterizations of novel positively charged hybrid membranes from poly(2,6 dimethyl-1,4-phenylene oxide)", J. Membr. Sci., 269(1-2), 142-151. https://doi.org/10.1016/j.memsci.2005.06.029

Cited by

  1. Preparation of anion exchange membranes from BPPO and dimethylethanolamine for electrodialysis vol.402, 2017, https://doi.org/10.1016/j.desal.2016.09.019
  2. BPPO-Based Anion Exchange Membranes for Acid Recovery via Diffusion Dialysis vol.10, pp.3, 2017, https://doi.org/10.3390/ma10030266
  3. Ion exchange membranes from poly(2,6-dimethyl-1,4-phenylene oxide) and related applications vol.61, pp.9, 2018, https://doi.org/10.1007/s11426-018-9296-6
  4. Removal of different anionic dyes from aqueous solution by anion exchange membrane vol.8, pp.3, 2015, https://doi.org/10.12989/mwt.2017.8.3.259
  5. Preparation, characterization of novel poly(hydroxybutyrate)/poly(butylene succinate)/ZnO porous resin and application in groundwater purification vol.17, pp.1, 2015, https://doi.org/10.1007/s13762-019-02421-4
  6. Higher Acid Recovery Efficiency of Novel Functionalized Inorganic/Organic Composite Anion Exchange Membranes from Acidic Wastewater vol.11, pp.2, 2015, https://doi.org/10.3390/membranes11020133
  7. Effect of Different Quaternary Ammonium Groups on the Hydroxide Conductivity and Stability of Anion Exchange Membranes vol.6, pp.12, 2021, https://doi.org/10.1021/acsomega.0c05134
  8. Fabrication of doubly charged anion-exchange membranes for enhancing hydroxide conductivity vol.56, pp.9, 2021, https://doi.org/10.1080/01496395.2020.1781896