DOI QR코드

DOI QR Code

테어링 튜브 컬의 변형 거동 예측 기법 연구

Deformation Behavior of Curling Strips on Tearing Tubes

  • 최지원 (과학기술연합대학원대학교 로보틱스 및 가상공학) ;
  • 권태수 (과학기술연합대학원대학교 로보틱스 및 가상공학) ;
  • 정현승 (과학기술연합대학원대학교 로보틱스 및 가상공학) ;
  • 김진성 (과학기술연합대학원대학교 로보틱스 및 가상공학)
  • Choi, Ji Won (Dept. of Robotics and Virtual Engineering, Korea Univ. of Science and Technology) ;
  • Kwon, Tae Soo (Dept. of Robotics and Virtual Engineering, Korea Univ. of Science and Technology) ;
  • Jung, Hyun Seung (Dept. of Robotics and Virtual Engineering, Korea Univ. of Science and Technology) ;
  • Kim, Jin Sung (Dept. of Robotics and Virtual Engineering, Korea Univ. of Science and Technology)
  • 투고 : 2015.04.15
  • 심사 : 2015.08.06
  • 발행 : 2015.10.01

초록

본 연구는 테어링 튜브에 플랫 다이를 설치하고 동하중이 가해졌을 때 에너지흡수용량 및 거동을 예측하기 위하여 수행하였다. 컬 끝과 튜브 본체가 접촉할 때 컬 끝의 굽힘이 발생함을 발견하고 식을 제안하였다. 그러나 컬 끝의 굽힘 하중과 에너지 소산율의 예측을 더욱 정확히 하기 위해 컬의 곡률반경의 변화와 튜브 두께의 감소에 주목할 필요가 있었다. X.Huang 등이 제안한 테어링 튜브 이론 모델에 컬의 평균 곡률반경, 감소하는 튜브 두께를 반영한 컬 끝의 굽힘 식을 추가하였고 충돌시험 결과를 통하여 검증하였다.

This paper discusses the analysis of the curl deformation behavior when a dynamic force is applied to a tearing tube installed on a flat die to predict the energy absorption capacity and deformation behavior. The deformation of the tips of the curling strips was obtained when the curl tips and tube body are in contact with each other, and a formula describing the energy dissipation rate caused by the deformation of the curl tips is proposed. To improve this formula, we focused on the variation of the curl radius and the reduced thickness of the tube. A formula describing the mean curl radius is proposed and verified using the curl radius measurement data of collision test specimens. These improved formulas are added to the theoretical model previously proposed by Huang et al. and verified from the collision test results of a tearing tube.

키워드

과제정보

연구 과제 주관 기관 : 한국철도기술연구원

참고문헌

  1. Moreno, C., Beaumont, R., Hughes, D. J., Williams, T. and Dashwood, R., 2015, "Determination of the Fracture Behavior of Axial Splitting Tubes and the Numerical Prediction of Their Energy Absorption Capabilities," International Journal of Crashworthiness, Vol. 20, No. 2, pp. 191-199. https://doi.org/10.1080/13588265.2014.997000
  2. Huh, H., Lim, J. H. and Park, S. H., 2009, "High Speed Tensile Test of Steel Sheets for the Stress-Strain Curve at the Intermediate Strain Rate," International Journal of Automotive Technology, Vol. 10, No. 2, pp. 195-204. https://doi.org/10.1007/s12239-009-0023-3
  3. Choi, J. W., Kwon, T. S., Jung, H. S., Kim, J. S. and Kwak, J. H., 2015, "A Study on Design and Dynamic Characteristics of Tearing Tubes Applied in Tram," Trans. Korean Soc. Auto. Eng.(KSAE), Vol. 23, No. 5, pp. 524-536. https://doi.org/10.7467/KSAE.2015.23.5.524
  4. Lee, S. H. and Kim, H. G., 2008, "Analysis of Axial Splitting of Circular Metal Tubes by Using Element Deletion Method," Trans. Korean Soc. Mech. Eng. A, Vol. 32, No. 6, pp. 496-503. https://doi.org/10.3795/KSME-A.2008.32.6.496
  5. Reddy, T. Y. and Reid, S. R., 1986, "Axial Splitting of Circular Metal Tubes," International Journal of Mechanical Science, 28, No. 2, pp. 111-131. https://doi.org/10.1016/0020-7403(86)90018-4
  6. Huang, X., Lu, G. and Yu, T. X., 2002, "On the Axial Splitting and Curling of Circular Metal Tubes," International Journal of Mechanical Science, 44, pp. 2369-2391. https://doi.org/10.1016/S0020-7403(02)00191-1
  7. Huang, X., Lu, G. and Yu, T. X., 2002, "Energy Absorption in Splitting Square Metal Tubes," Thin-Walled Structures, 40, pp. 153-165. https://doi.org/10.1016/S0263-8231(01)00058-1
  8. Ko, Y. K., Ahn, K. H., Huh, H., Choi, W. M., Jung, H. S. and Kwon, T. S., 2009, "Prediction of Crash Energy Absorption Capacity of A Tearing Tube," KSAE Annual Conference Proceedings, pp. 3134-3140.
  9. Lu, G. and Yu, T. X., 2003, Energy Absorption of Structures and Materials, Woodhead publishing limited, Cambridge, England, pp. 223-236.
  10. Gere, J. M. and Timoshenko, S. P., 2009, Mechanics of Materials, 6th Edition, Cengage Learning Korea Limited and Kyobo book Centre Co. Ltd.., South Korea, pp. 22-24, 828-842.
  11. Chakrabarty, J., 1987, Theory of Plasticity, McGraw-Hill, New York, pp. 148-160.
  12. Hallquist, J. O., 2007, LS-DYNA(R) Keyword User's Manual Version 971, Livermore Software Technology Corporation, Livermore, California.
  13. KS D 3566:2012, Carbon Steel Tubes for General Structural Purposes, Korea Agency for Technology and Standards, pp. 1-15.