DOI QR코드

DOI QR Code

뜬 마이크로 디바이스를 이용한 Ge-SixGe1-x Core-Shell Nanowires 의 열전도율 측정

Thermal Conductivity Measurement of Ge-SixGe1-x Core-Shell Nanowires Using Suspended Microdevices

  • 투고 : 2015.05.20
  • 심사 : 2015.08.25
  • 발행 : 2015.10.01

초록

나노선에서 코어-셸 헤테로 구조를 도입함으로써 열 전도율을 낮출 수 있으며, 이로 인해 열전 효율(ZT)을 향상시킬 수 있다는 것이 이론 연구를 통해 제안되었다. 본 논문에서는 코어-셸 나노선의 열전도율 감소를 실험적인 방법을 통해 확인하였다. 화학증기 증착법을 통해 만든 게르마늄-규소 $_x$ 게르마늄 $_{1-x}(Ge-Si_xGe_{1-x})$ 코어-셸 나노선의 열전도율을 마이크로 크기의 뜬 디바이스를 이용하여 측정하였다. 셸에서 측정된 실리콘의 함유율(x)는 0.65 로 확인하였으며, 게르마늄은 코어와 셸 사이에서, 격자 불일치(lattice mismatch)에서 비롯된 결점(defect)와 같은 역할을 한다. 또한, 4-point I-V 측정실험에, 휘트스톤 브릿지 실험을 추가 진행함으로써 측정 민감도를 강화하였다. 측정된 열전도율은 상온에서 9~13 W/mK 으로써, 비슷한 지름을 가지는 게르마늄 나노선과 비교하였을 때, 열전도율이 약 30 % 낮아졌음을 확인하였다.

Theoretical calculations suggest that the thermoelectric figure of merit (ZT) can be improved by introducing a core-shell heterostructure to a semiconductor nanowire because of the reduced thermal conductivity of the nanowire. To experimentally verify the decrease in thermal conductivity in core-shell nanowires, the thermal conductivity of Ge-SixGe1-x core-shell nanowires grown by chemical vapor deposition (CVD) was measured using suspended microdevices. The silicon composition (Xsi) in the shells was measured to be about 0.65, and the remainder of the germanium in the shells was shown to play a role in decreasing defects originating from the lattice mismatch between the cores and shells. In addition to the standard four-point current- voltage (I-V) measurement, the measurement configuration based on the Wheatstone bridge was attempted to enhance the measurement sensitivity. The measured thermal conductivity values are in the range of 9-13 W/mK at room temperature and are lower by approximately 30 than that of a germanium nanowire with a comparable diameter.

키워드

참고문헌

  1. Amato, M., Palummo, M., Rurali, R. and Ossicini, S., 2014, "Silicon-Germanium Nanowires: Chemistry and Physics in Play, from Basic Principles to Advanced Applications," Chemical Reviews Vol. 114, No. 2, pp. 1371-1412.
  2. Li, D., Wu, Y., Kim, P., Shi, L., Yang, P. and Majumdar, A., 2003, "Thermal Conductivity of Individual Silicon Nanowires," Applied Physics Letters Vol. 83, No. 14, pp. 2934-2936. https://doi.org/10.1063/1.1616981
  3. Hochbaum, A. I., Chen, R., Delgado, R. D., Liang, W., Garnett, E. C., Najarian, M., Majumdar, A. and Yang, P., 2008, "Enhanced Thermoelectric Performance of Rough Silicon Nanowires," Nature 451(7175), pp. 163-167. https://doi.org/10.1038/nature06381
  4. Jiang, J.-W., Yang, N., Wang, B.-S. and Rabczuk, T., 2013, "Modulation of Thermal Conductivity in Kinked Silicon Nanowires: Phonon Interchanging and Pinching Effects," Nano Letters Vol. 13, No. 4, pp. 1670-1674.
  5. Hu, M., Zhang, X., Giapis, K. P. and Poulikakos, D., 2011, "Thermal Conductivity Reduction in Core-Shell Nanowires, Physical Review B 84(8) 085442. https://doi.org/10.1103/PhysRevB.84.085442
  6. Prasher, R. 2006, "Thermal Conductivity of Tubular and Core/Shell Nanowires," Applied Physics Letters 89(6) 063121. https://doi.org/10.1063/1.2336720
  7. Xu, W., Zhang, G. and Li, B., 2015, "Effects of Lithium Insertion on Thermal Conductivity of Silicon Nanowires," Applied Physics Letters 106(17) 173901. https://doi.org/10.1063/1.4919587
  8. Murphy, K. F., Piccione, B., Zanjani, M. B., Lukes, J. R. and Gianola, D. S., 2014, "Strain- and Defect- Mediated Thermal Conductivity in Silicon Nanowires," Nano Letters Vol. 14, No. 7, pp. 3785-3792. https://doi.org/10.1021/nl500840d
  9. Lee, E. K., et al. 2012, "Large Thermoelectric Figureof- Merits from SiGe Nanowires by Simultaneously Measuring Electrical and Thermal Transport Properties," Nano Letters Vol. 12, No. 6, pp. 2918-2923. https://doi.org/10.1021/nl300587u
  10. Pokatilov, E. P., Nika, D. L. and Balandin, A. A., 2005, "Acoustic-Phonon Propagation in Rectangular Semiconductor Nanowires with Elastically Dissimilar Barriers," Physical Review B 72(11) 113311. https://doi.org/10.1103/PhysRevB.72.113311
  11. Chen, J., G. Zhang, G. and Li, B., 2011, "Phonon Coherent Resonance and Its Effect on Thermal Transport in Core-Shell Nanowires," The Journal of Chemical Physics 135(10) 104508. https://doi.org/10.1063/1.3637044
  12. Wingert, M. C., Chen, Z. C. Y., Dechaumphai, E., Moon, J., Kim, J. H., Xiang, J. and Chen, R., 2011, "Thermal Conductivity of Ge and Ge-Si Core-Shell Nanowires in the Phonon Confinement Regime," Nano Letters Vol. 11, No. 12, pp. 5507-5513. https://doi.org/10.1021/nl203356h
  13. Glassbrenner, C. J. and Slack, G. A., 1964, "Thermal Conductivity of Silicon and Germanium from 3K to the Melting Point," Physical Review 134(4A), pp. A1058-A1069. https://doi.org/10.1103/PhysRev.134.A1058
  14. Pennelli, G., Nannini, A. and M. Macucci, 2014, "Indirect Measurement of Thermal Conductivity in Silicon Nanowires," Journal of Applied Physics 115(8) 084507. https://doi.org/10.1063/1.4866994
  15. Grauby, S., Puyoo, E., Rampnoux, J.-M., Rouviere, E. and Dilhaire, S., 2013, "Si and SiGe Nanowires: Fabrication Process and Thermal Conductivity Measurement by $3{\omega}$-Scanning Thermal Microscopy," The Journal of Physical Chemistry C Vol. 117, No. 17, pp. 9025-9034. https://doi.org/10.1021/jp4018822
  16. Hao, H.-T., Ger, T.-R., Chiang, J.-W., Huang, Z.-Y. and Lai, M.-F., 2014, "Thermoelectric Property of Nickel Nanowires Enhanced by Resistance," Magnetics, IEEE Transactions on, Vol. 50, No. 1, pp. 1-4.
  17. Shi, L., Li, D., Yu, C., Jang, W., Kim, D., Yao, Z., Kim, P. and Majumdar, A., 2003, "Measuring Thermal and Thermoelectric Properties of One-Dimensional Nanostructures Using a Microfabricated Device," Journal of Heat Transfer, Vol. 125, No. 5, pp. 881-888. https://doi.org/10.1115/1.1597619
  18. Wingert, M. C., Chen, Z. C. Y., Kwon, S., Xiang, J. and Chen, R., 2012, "Ultra-Sensitive Thermal Conductance Measurement of One-Dimensional Nanostructures Enhanced by Differential Bridge," Review of Scientific Instruments, 83(2) 024901. https://doi.org/10.1063/1.3681255
  19. Varahramyan, K. M., Ferrer, D., Tutuc, E. and Banerjee, S. K., 2009, "Band Engineered Epitaxial Ge-SixGe1−x Core-Shell Nanowire Heterostructures," Applied Physics Letters, 95(3) 033101. https://doi.org/10.1063/1.3173811

피인용 문헌

  1. Direct Determination of Spectral Phonon-Surface Scattering Rate from Experimental Data on Spectral Phonon Mean Free Path Distribution vol.40, pp.9, 2016, https://doi.org/10.3795/KSME-B.2016.40.9.621