DOI QR코드

DOI QR Code

Optimization of The Organosolv Pretreatment of Yellow Poplar for Bioethanol Production by Response Surface Methodology

  • Kim, Ho-Yong (Department of Forest Biomaterials, North Carolina State University) ;
  • Hong, Chang-Young (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Kim, Seon-Hong (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Yeo, Hwanmyeong (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Choi, In-Gyu (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University)
  • 투고 : 2015.03.25
  • 심사 : 2015.05.13
  • 발행 : 2015.09.25

초록

We investigated the optimization of the organosolv pretreatment of yellow poplar for bioethanol production. Response surface methodology was used to determine the optimal conditions of three independent variables (reaction temperature, reaction time, and sulfuric acid (SA) concentration). Reaction temperature is the most significant variable in the degradation of xylan and lignin in the presence of an acid catalyst, and ethanol production increased with a decrease in the lignin content. The highest ethanol concentration ($42.80g/{\ell}$) and theoretical ethanol yield (98.76%) were obtained at $152^{\circ}C$ (2.5 bar) with 1.6% SA for 16 min. However, because of excessive degradation of the raw material, the overall ethanol yield was less than under other pretreatment conditions which has approximately 50% of WIS recovery rate after pretreatment. The optimal conditions for the maximum overall ethanol yield ($146^{\circ}C$ with 1.22% SA for 15.9 min) were determined with a predicted yield of 17.11%, and the experimental values were very close (17.15%). Therefore, the quadratic model is reliable.

키워드

참고문헌

  1. Alvira, P., Tomas-Pejo, E., Ballesteros, M., Negro, M. 2010. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource Technology 101(13): 4851-4861. https://doi.org/10.1016/j.biortech.2009.11.093
  2. Cara, C., Ruiz, E., Oliva, J., Saez, F., Castro, E. 2008. Conversion of olive tree biomass into fermentable sugars by dilute acid pretreatment and enzymatic saccharification. Bioresource Technology 99(6): 1869-1876. https://doi.org/10.1016/j.biortech.2007.03.037
  3. Chum, H.L., Johnson, D.K., Black, S.K. 1990. Organosolv pretreatment for enzymic hydrolysis of poplars. 2. Catalyst effects and the combined severity parameter. Industrial & Engineering Chemistry Research 29(2): 156-162. https://doi.org/10.1021/ie00098a003
  4. Demirbas, A. 2005. Bioethanol from cellulosic materials: A renewable motor fuel from biomass. Energy Sources 27(4): 327-338. https://doi.org/10.1080/00908310390266643
  5. Dominguez, J., Oliet, M., Alonso, M., Gilarranz, M., Rodriguez, F. 2008. Thermal stability and pyrolysis kinetics of organosolv lignins obtained from Eucalyptus globulus. Industrial Crops and Products 27(2): 150-156. https://doi.org/10.1016/j.indcrop.2007.07.006
  6. El Hage, R., Brosse, N., Sannigrahi, P., Ragauskas, A. 2010. Effects of process severity on the chemical structure of Miscanthus ethanol organosolv lignin. Polymer Degradation and Stability 95(6): 997-1003. https://doi.org/10.1016/j.polymdegradstab.2010.03.012
  7. El Hage, R., Chrusciel, L., Desharnais, L., Brosse, N. 2010. Effect of autohydrolysis of Miscanthus x giganteus on lignin structure and organosolv delignification. Bioresource Technology 101(23): 9321-9329. https://doi.org/10.1016/j.biortech.2010.06.143
  8. Farrell, A.E., Plevin, R.J., Turner, B.T., Jones, A.D., O'hare, M., Kammen, D.M. 2006. Ethanol can contribute to energy and environmental goals. Science 311(5760): 506-508. https://doi.org/10.1126/science.1121416
  9. Goh, C.S., Tan, H.T., Lee, K.T., Brosse, N. 2011. Evaluation and optimization of organosolv pretreatment using combined severity factors and response surface methodology. Biomass & Bioenergy 35(9): 4025-4033. https://doi.org/10.1016/j.biombioe.2011.06.034
  10. Halvorsen, K.E., Barnes, J.R., Solomon, B.D. 2009. Upper midwestern USA ethanol potential from cellulosic materials. Society and Natural Resources 22(10): 931-938. https://doi.org/10.1080/08941920902755382
  11. Hill, J., Nelson, E., Tilman, D., Polasky, S., Tiffany, D. 2006. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc. Natl. Acad. Sci. U. S. A. 103(30): 11206-11210. https://doi.org/10.1073/pnas.0604600103
  12. Holtzapple, M., Humphrey, A. 1984. The effect of organosolv pretreatment on the enzymatic hydrolysis of poplar. Biotechnology and Bioengineering 26(7): 670-676. https://doi.org/10.1002/bit.260260706
  13. Kim, H., Lee, J., Jeffries, T., Choi, I. 2010. Response surface optimization of oxalic acid pretreatment of yellow poplar (Liriodendron tulipifera) for production of glucose and xylose monosaccarides. Bioresource Technology 102(2): 1440-1446. https://doi.org/10.1016/j.biortech.2010.09.075
  14. Kim, Y.H., Na, B.I., Lee, S.M., Lee, H.W., Lee, J.W. 2013. Optimal Condition for Torrefaction of Eucalyptus by Response Surface Methodology. J. Korean Wood Sci. & Tech 41(6): 497-506. https://doi.org/10.5658/WOOD.2013.41.6.497
  15. Koo, B.W., Kim, H.Y., Park, N., Lee, S.M., Yeo, H., Choi, I.G. 2011. Organosolv pretreatment of Liriodendron tulipifera and simultaneous saccharification and fermentation for bioethanol production. Biomass & Bioenergy 35(5): 1833-1840. https://doi.org/10.1016/j.biombioe.2011.01.014
  16. Koo, B.-W., Park, N., Jeong, H.-S., Choi, J.-W., Yeo, H., Choi, I.-G. 2011. Characterization of by-products from organosolv pretreatments of yellow poplar wood (Liriodendron tulipifera) in the presence of acid and alkali catalysts. Journal of Industrial and Engineering Chemistry 17(1): 18-24. https://doi.org/10.1016/j.jiec.2010.10.003
  17. Lee, J.W., Kim, H.Y., Koo, B.W., Choi, D.H., Kwon, M., Choi, I.G. 2008. Enzymatic saccharification of biologically pretreated Pinus densiflora using enzymes from brown rot fungi. Journal of Bioscience and Bioengineering 106(2): 162-167. https://doi.org/10.1263/jbb.106.162
  18. Maache-Rezzoug, Z., Pierre, G., Nouviaire, A., Maugard, T., Rezzoug, S. 2011. Optimizing thermomechanical pretreatment conditions to enhance enzymatic hydrolysis of wheat straw by response surface methodology. Biomass & Bioenergy 35(7): 3129-3128. https://doi.org/10.1016/j.biombioe.2011.04.012
  19. Park, N., Kim, H., Koo, B., Yeo, H., Choi, I. 2010. Organosolv pretreatment with various catalysts for enhancing enzymatic hydrolysis of pitch pine (Pinus rigida). Bioresource Technology 101(18): 7046-7053. https://doi.org/10.1016/j.biortech.2010.04.020
  20. Perez, J., Ballesteros, I., Ballesteros, M., Saez, F., Negro, M., Manzanares, P. 2008. Optimizing liquid hot water pretreatment conditions to enhance sugar recovery from wheat straw for fuel-ethanol production. Fuel 87(17-18): 3640-3647. https://doi.org/10.1016/j.fuel.2008.06.009
  21. Saddler, J.N., Ramos, L.P., Breuil, C. 1993. Bioconversion of Forest and Agricultural Plant Wastes. CAB International, London, UK.
  22. Sanchez, O., Cardona, C. 2008. Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresource Technology 99(13): 5270-5295. https://doi.org/10.1016/j.biortech.2007.11.013
  23. Sidiras, D., Koukios, E. 2004. Simulation of acid-catalysed organosolv fractionation of wheat straw. Bioresource Technology 94(1): 91-98. https://doi.org/10.1016/j.biortech.2003.10.029
  24. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D. 2004. Determination of structural carbohydrates and lignin in biomass. National Renewable Energy Laboratory, Golden, CO.
  25. Teramoto, Y., Lee, S.H., Endo, T. 2008. Pretreatment of woody and herbaceous biomass for enzymatic saccharification using sulfuric acid-free ethanol cooking. Bioresource Technology 99(18): 8856-8863. https://doi.org/10.1016/j.biortech.2008.04.049
  26. Teramoto, Y., Tanaka, N., Lee, S.H., Endo, T. 2008. Pretreatment of eucalyptus wood chips for enzymatic saccharification using combined sulfuric acid free ethanol cooking and ball milling. Biotechnology and Bioengineering 99(1): 75-85. https://doi.org/10.1002/bit.21522
  27. Wyman, C.E., Dale, B.E., Elander, R.T., Holtzapple, M., Ladisch, M.R., Lee, Y.Y. 2005. Coordinated development of leading biomass pretreatment technologies. Bioresource Technology 96(18): 1959-1966. https://doi.org/10.1016/j.biortech.2005.01.010
  28. Zhao, X., Cheng, K., Liu, D. 2009. Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Applied Microbiology and Biotechnology 82(5): 815-827. https://doi.org/10.1007/s00253-009-1883-1

피인용 문헌

  1. Bioethanol production from renewable sources: Current perspectives and technological progress vol.71, 2017, https://doi.org/10.1016/j.rser.2016.12.076