References
- M. Arioli, I. S. Duff, and P. P. M. de Rijk, On the augmented system approach to sparse least squares problems, Numer. Math. 55 (1989), no. 6, 667-684. https://doi.org/10.1007/BF01389335
- Z. Z. Bai, B. N. Parlett, and Z. Q. Wang, On generalized successive overrelaxation methods for augmented linear systems, Numer. Math. 102 (2005), no. 1, 1-38. https://doi.org/10.1007/s00211-005-0643-0
- Z. Z. Bai and Z. Q. Wang, On parameterized inexact Uzawa methods for generalized saddle point problems, Linear Algebra Appl. 428 (2008), no. 11-12, 2900-2932. https://doi.org/10.1016/j.laa.2008.01.018
- A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York, 1979.
- Z. H. Cao, On the convergence of general stationary linear iterative methods for singular linear systems, SIAM J. Matrix Anal. Appl. 29 (2007), 1382-1388.
- Z. Chao and G. Chen, Semi-convergence analysis of the Uzawa-SOR methods for sin-gular saddle point problems, Appl. Math. Lett. 35 (2014), 52-57. https://doi.org/10.1016/j.aml.2014.04.014
- Z. Chao, N. Zhang, and Y. Lu, Optimal parameters of the generalized symmetric SOR method for augmented systems, J. Comput. Appl. Math. 266 (2014), 52-60. https://doi.org/10.1016/j.cam.2014.01.023
- M. T. Darvishi and P. Hessari, Symmetric SOR method for augmented systems, Appl. Math. Comput. 183 (2006), no. 1, 409-415. https://doi.org/10.1016/j.amc.2006.05.094
- H. C. Elman, Preconditioning for the steady-state Navier-Stokes equations with low viscosity, SIAM J. Sci. Comput. 20 (1999), no. 4, 1299-1316. https://doi.org/10.1137/S1064827596312547
- H. C. Elman and D. J. Silvester, Fast nonsymmetric iteration and preconditioning for Navier-Stokes equations, SIAM J. Sci. Comput. 17 (1996), no. 1, 33-46. https://doi.org/10.1137/0917004
- G. H. Golub, X. Wu, and J. Y. Yuan, SOR-like methods for augmented systems, BIT 41 (2001), no. 1, 71-85. https://doi.org/10.1023/A:1021965717530
- F. H. Harlow and J. E. Welch, Numerical calculation of time-dependent viscous incom-pressible flow of fluid with free surface, Phys. Fluids 8 (1965), 2182-2189. https://doi.org/10.1063/1.1761178
- J. I. Li and T. Z. Huang, The semi-convergence of generalized SSOR method for singular augmented systems, High Performance Computing and Applications, Lecture Notes in Computer Science 5938 (2010), 230-235.
- S. Wright, Stability of augmented system factorization in interior point methods, SIAM J. Matrix Anal. Appl. 18 (1997), no. 1, 191-222. https://doi.org/10.1137/S0895479894271093
- J. Y. Yuan and A. N. Iusem, Preconditioned conjugate gradient methods for generalized least squares problem, J. Comput. Appl. Math. 71 (1996), no. 2, 287-297. https://doi.org/10.1016/0377-0427(95)00239-1
- J. H. Yun, Variants of the Uzawa method for saddle point problem, Comput. Math. Appl. 65 (2013), no. 7, 1037-1046. https://doi.org/10.1016/j.camwa.2013.01.037
- J. H. Yun, Convergence of relaxation iterative methods for saddle point problem, Appl. Math. Comput. 251 (2015), 65-80. https://doi.org/10.1016/j.amc.2014.11.047
- G. F. Zhang and Q. H. Lu, On generalized symmetric SOR method for augmented systems, J. Comput. Appl. Math. 219 (2008), no. 1, 51-58. https://doi.org/10.1016/j.cam.2007.07.001
- G. F. Zhang and S. S. Wang, A generalization of parameterized inexact Uzawa method for singular saddle point problems, Appl. Math. Comput. 219 (2013), no. 9, 4225-4231. https://doi.org/10.1016/j.amc.2012.10.116
- N. Zhang and Y. Wei, On the convergence of general stationary iterative methods for range-Hermitian singular linear systems, Numer. Linear Algebra Appl. 17 (2010), no. 1, 139-154. https://doi.org/10.1002/nla.663
- B. Zheng, Z. Z. Bai, and X. Yang, On semi-convergence of parameterized Uzawa methods for singular saddle point problems, Linear Algebra Appl. 431 (2009), no. 5-7, 808-817. https://doi.org/10.1016/j.laa.2009.03.033
- L. Zhou and N. Zhang, Semi-convergence analysis of GMSSOR methods for singular saddle point problems, Comput. Math. Appl. 68 (2014), no. 5, 596-605. https://doi.org/10.1016/j.camwa.2014.07.003