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SEMI-CONVERGENCE OF THE PARAMETERIZED

INEXACT UZAWA METHOD FOR SINGULAR SADDLE

POINT PROBLEMS

Jae Heon Yun

Abstract. In this paper, we provide semi-convergence results of the
parameterized inexact Uzawa method with singular preconditioners for
solving singular saddle point problems. We also provide numerical exper-
iments to examine the effectiveness of the parameterized inexact Uzawa
method with singular preconditioners.

1. Introduction

We consider the singular saddle point problem of the form

(1)

(

A B

−BT 0

)(

x

y

)

=

(

f

−g

)

,

where A ∈ Rm×m is a symmetric positive definite matrix, B ∈ Rm×n is a
rank-deficient matrix of rank(B) = r < n with m ≥ n, f ∈ Rm and g ∈ Rn.
The singular saddle point problem (1) is important and arises in many different
applications of scientific computing and engineering, such as the mixed finite
element methods for Navier-Stokes equations, computational fluid dynamics,
constrained optimization, the weighted least squares problems, electronic net-
works, linear elasticity, and so forth [1, 10, 14, 15].

When B is of full column rank, the linear system (1) is nonsingular. For
this case, many relaxation iterative methods based on matrix splittings and
their convergence properties have been proposed and analyzed, e.g., SOR-like
method [11], GSOR (Generalized SOR) method [2], PIU (Parameterized Inex-
act Uzawa) method [3], SSOR-like method [8, 20], GSSOR (Generalized SSOR)
method [7, 18], several variants of Uzawa method [16, 17], and so on.
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Recently, several authors have presented semi-convergence analysis of relax-
ation iterative methods with nonsingular preconditioners for solving the singu-
lar saddle point problem (1). Zheng et al. [21] studied semi-convergence of the
PU (Parameterized Uzawa) method, Li and Huang [13] examined semi-conver-
gence of the GSSOR method, Zhang and Wang [19] studied semi-convergence
of the GPIU method, Chao and Chen [6] provided semi-convergence analysis of
the Uzawa-SOR method, and Zhou and Zhang [22] studied semi-convergence
of the GMSSOR (Generalized Modified SSOR) method.

So far, most iterative methods for solving singular saddle point problems
have been studied using nonsingular preconditioners. Also notice that the
Schur complement S = BTA−1B of the coefficient matrix of the singular sad-
dle problem (1) is singular. Hence it may be better to choose a singular pre-
conditioner as an approximation of the singular Schur complement S. For this
reason, this paper studies semi-convergence of the PIU (Parameterized Inexact
Uzawa) method with singular preconditioners for solving the singular saddle
point problem (1). This paper is organized as follows. In Section 2, we pro-
vide preliminary results for semi-convergence of the basic iterative methods. In
Section 3, we provide semi-convergence analysis and quasi-optimal parameters
for the PIU method with singular preconditioners. In Section 4, numerical ex-
periments are carried out to examine the effectiveness of the PIU method with
singular preconditioners. Lastly, some conclusions are drawn.

2. Preliminaries for semi-convergence analysis

For simplicity of exposition, some notation and definitions are presented.
For a vector x, x∗ denotes the complex conjugate transpose of the vector x.
For a square matrix G, R(G) denotes the range space of G, N(G) denotes the
null space of G, σ(G) denotes the set of all eigenvalues of G, and ρ(G) denotes
the spectral radius of G.

Let us recall some useful results on iterative methods for solving singular
linear systems based on matrix splitting. For a matrix E ∈ Rn×n, the smallest
nonnegative integer k such that rank(Ek) = rank(Ek+1) is called the index of
E, and denoted by k = index(E). In other words, index(E) is the size of the
largest Jordan block corresponding to the zero eigenvalue of E. For a square
matrix T , the pseudo-spectral radius ν(T ) is defined by

ν(T ) = max{|λ| | λ ∈ σ(T )− {1}},
where σ(T ) is the set of eigenvalues of T .

The Moore-Penrose inverse [4] of a singular matrix E ∈ Rn×n is defined by
the unique matrix E† which satisfies the following equations

E = EE†E, E† = E†EE†, (EE†)T = EE†, (E†E)T = E†E.

Let A = M − N be a splitting of a singular matrix A, where M is singular.
Then an iterative method corresponding to this singular splitting for solving a
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singular linear system Ax = b is given by

(2) xi+1 = (I −M †A)xi +M †b for i = 0, 1, . . . .

Definition 2.1. The iterative method (2) is semi-convergent if for any initial
guess x0, the iteration sequence {xi} produced by (2) converges to a solution
x∗ of the singular linear system Ax = b.

Notice that a matrix T is called semi-convergent if limk→∞ T k exists, or
equivalently index(I − T ) = 1 and ν(T ) < 1 [4].

Theorem 2.2 ([5]). The iterative method (2) is semi-convergent if and only if

index(M †A) = 1, ν(I − M †A) < 1, and N(M †A) = N(A), i.e., I − M †A is

semi-convergent and N(M †A) = N(A).

3. Semi-convergence analysis of the PIU method

In this section, we study semi-convergence of the PIU method with singular
preconditioners for solving the singular saddle point problem (1). For the
coefficient matrix of the singular saddle point problem (1), we consider the
following splitting

(3) A =

(

A B

−BT 0

)

= D − L − U ,

where

(4) D =

(

P 0
0 Q

)

, L =

(

0 0
BT 0

)

, U =

(

P −A −B

0 Q

)

,

where P ∈ Rm×m is a symmetric positive definite (SPD) matrix which approx-
imates A, and Q ∈ Rn×n is a singular symmetric positive semi-definite matrix
which approximates the approximated Schur complement matrix BTP−1B.

Let

Ω =

(

ωIm 0
0 τIn

)

,

where ω > 0 and τ > 0 are relaxation parameters, Im ∈ Rm×m and In ∈ Rn×n

denote the identity matrices of order m and n, respectively. Let us assume that
Q is chosen asQ = BTM−1B, whereM is a SPDmatrix which approximates P .
It is clear that such a Q is singular symmetric positive semi-definite. Then the
PIU (Parameterized Inexact Uzawa) method with the singular preconditioner
Q for solving the singular saddle point problem (1) is defined by

(5)

(

xk+1

yk+1

)

= H(ω, τ)

(

xk

yk

)

+M(ω, τ)

(

f

−g

)

, k = 0, 1, 2, . . . ,

where

H(ω, τ) = I − (D − ΩL)†ΩA,

M(ω, τ) = (D − ΩL)†Ω.
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Since QQ† is an orthogonal projection onto R(Q), QQ†BT = BT . Thus, simple
calculation yields

(6) (D − ΩL)† =
(

P−1 0
τQ†BTP−1 Q†

)

and

(7) H(ω, τ) =

(

Im − ωP−1A −ωP−1B

τQ†BT (Im − ωP−1A) In − ωτQ†BTP−1B

)

.

From (5), (6) and (7), the PIU method with the singular preconditioner Q can
be rewritten as

Algorithm 1: PIU Method with singular Q

Choose ω, τ and initial vectors x0, y0
For k = 0, 1, . . . , until convergence

xk+1 = xk + ωP−1 (f −Axk −Byk)
yk+1 = yk + τQ† (BTxk+1 − g)

End For

Here, Q† (Moore-Penrose inverse of the matrix Q) is computed only once to
reduce computational amount, and then it is stored for later use. If P = A in
Algorithm 1, then the PIU method reduces to the PU method.

The following theorem shows semi-convergence of the PIU method with sin-
gular preconditioner.

Theorem 3.1. Let Q be chosen as Q = BTM−1B, where M is a SPD matrix

which approximates P . Then the PIU method for solving the singular saddle

point problem (1) is semi-convergent if ω and τ satisfy

0 < ω <
2

ηmax
and 0 < τ <

2(2− ηmax ω)

ω µmax
,

where µmax and ηmax are the largest eigenvalues of the matrices Q†BTP−1B

and P−1A, respectively.

Proof. Assume that the rank of B is r, i.e., r = rank(B) < n. Let

(8) B = WΣV ∗ and Σ =

(

Σr 0
0 0

)

∈ R
m×n

be the singular value decomposition of B, where W and V are unitary matrices,
Σr = diag(σ1, σ2, . . . , σr) and σi’s are positive singular values of B. Let W and
V be partitioned into W = (W1,W2) and V = (V1, V2) with W1 ∈ Cm×r, W2 ∈
Cm×(m−r), V1 ∈ Cn×r, V2 ∈ Cn×(n−r), respectively. Let us define an (m +
n)× (m+ n) unitary matrix P as

(9) P =

(

W 0
0 V

)

.
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Let Ĥ(ω, τ) = P∗H(ω, τ)P . Then

(10) Ĥ(ω, τ) =

(

Im − ωW ∗P−1AW −ωW ∗P−1BV

τV ∗Q†BT (Im − ωP−1A)W In − ωτV ∗Q†BTP−1BV

)

.

If we define Â = W ∗AW , P̂ = W ∗PW and Q̂ = V ∗QV , then

(11) Ĥ(ω, τ) =

(

Im − ωP̂−1Â −ωP̂−1Σ

τQ̂†ΣT (Im − ωP̂−1Â) In − ωτQ̂†ΣT P̂−1Σ

)

.

Since Q = BTM−1B and B = WΣV ∗, one can obtain

(12) Q̂ = V ∗QV =

(

Q̂1 0
0 0

)

,

where Q̂1 = ΣrW
∗
1M

−1W1Σr is an r × r SPD matrix. Thus

(13) Q̂† = V ∗Q†V =

(

Q̂−1
1 0
0 0

)

.

If we let B1 =
(

Σr

0

)

∈ Rm×r, then Σ = (B1, 0) and Q̂1 = BT
1 (W

∗M−1W )B1.
Hence, from (11) and (13) one obtains

(14) Ĥ(ω, τ) =





Im − ωP̂−1Â −ωP̂−1B1 0

τQ̂−1
1 BT

1 (Im − ωP̂−1Â) Ir − ωτQ̂−1
1 BT

1 P̂
−1B1 0

0 0 In−r



 .

Notice that Â and Q̂1 are Hermitian positive definite matrices. Let

(15) Ĥ1(ω, τ) =

(

Im − ωP̂−1Â −ωP̂−1B1

τQ̂−1
1 BT

1 (Im − ωP̂−1Â) Ir − ωτQ̂−1
1 BT

1 P̂
−1B1

)

.

Then Ĥ1(ω, τ) is the iteration matrix of the PIU method applied to the follow-
ing nonsingular saddle point problem

(16)

(

Â B1

−BT
1 0

)(

x̂

ŷ

)

=

(

f̂

−ĝ

)

with the preconditioning matrix Q̂1 and P̂ as an approximation of Â. From
Theorem 2.2 in [3], ρ(Ĥ1(ω, τ)) < 1 is obtained if 0 < ω < 2

ηmax

and 0 <

τ <
2(2−ηmax ω)

ω µmax

, where µmax and ηmax are the largest eigenvalues of the non-

singular matrices Q̂−1
1 BT

1 P̂
−1B1 and P̂−1Â, respectively. On the other hand,

W ∗(P−1A)W = P̂−1Â and

V ∗(Q†BTP−1B)V = Q̂†ΣT P̂−1Σ

=

(

Q̂−1
1 BT

1 P̂
−1B1 0

0 0

)

.

Hence, µmax and ηmax are also the largest eigenvalues of the matrices

Q†BTP−1B and P−1A, respectively.
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Since ρ(Ĥ1(ω, τ)) < 1, (14) and (15) imply that the matrix Ĥ(ω, τ) is semi-

convergent. Since Ĥ(ω, τ) = P∗H(ω, τ)P , H(ω, τ) is also semi-convergent.
Notice that ΩA = (D − ΩL)− ((I − Ω)D +ΩU). Hence, from Theorem 2.2

it remains to show that N(ΩA) = N((D − ΩL)†ΩA). Since N(ΩA) = N(A),
it is sufficient to show that N((D − ΩL)†ΩA) ⊂ N(A). Suppose that ( xy ) ∈
N((D − ΩL)†ΩA). Then

ωP−1(Ax+By) = 0 and ωτQ†BTP−1(Ax +By)− τQ†BTx = 0.

From these equations, Ax + By = 0 and −Q†BTx = 0. Since QQ†BT = BT ,
−BTx = 0, which implies ( xy ) ∈ N(A). Therefore, the proof is complete. �

Since the PIU method reduces to the PU method when P = A, the following
corollary for semi-convergence of the PU method is obtained.

Corollary 3.2. Let Q be chosen as Q = BTM−1B, where M is a SPD matrix

which approximates A. Then the PU method for solving the singular saddle

point problem (1) is semi-convergent if ω and τ satisfy

0 < ω < 2 and 0 < τ <
2(2− ω)

ω µmax
,

where µmax is the largest eigenvalues of the matrices Q†BTA−1B.

From Theorem 3.1 in [3], we can obtain the following theorem about the
quasi-optimal parameters and the corresponding quasi-optimal semi-conver-
gence factor for the PIU method.

Theorem 3.3. Consider the PIU method for solving the singular saddle point

problem (1). Assume that Q is chosen as Q = BTM−1B, where M is a SPD

matrix which approximates P . Let µmin and µmax be the smallest and largest

nonzero eigenvalues of the matrix Q†BTP−1B respectively, and let ηmin and

ηmax be the smallest and largest eigenvalues of the matrix P−1A respectively.

Then the quasi-optimal parameters ωopt and τopt are given by

ωopt =
4

(µmin + µmax) τ0 + 2 ηmax
and τopt = τ0

and the corresponding quasi-optimal semi-convergence factor ν(H(ω, τ)) is

ν(H(ωopt, τopt)) =

√

1− 4 ηmin

(µmin + µmax) τ0 + 2 ηmax
.

Here, τ0 is a positive root of the cubic equation τ3 + aτ2 + bτ + c = 0 such that

ωo(τ0) = ω+(τ0), where ωo and ω+ are the functions defined as in [3],

a =
2(ηmax − 2ηmin)

µmin + µmax
, b =

ηmin(ηmin − 2ηmax)

µminµmax
, c =

2 η2min ηmax

µmin µmax(µmin + µmax)
.

From Corollary 3.2 and Theorem 4.1 in [2], we can obtain the following
corollary about the optimal parameters and the corresponding optimal semi-
convergence factor for the PU method.
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Corollary 3.4. Consider the PU method for solving the singular saddle point

problem (1). Let Q be chosen as Q = BTM−1B, where M is a SPD ma-

trix which approximates A, and let µmin and µmax be the smallest and largest

nonzero eigenvalues of the matrix Q†BTA−1B, respectively. Then the optimal

parameters ωo and τo are given by

ωo =
4
√
µminµmax

(
√
µmin +

√
µmax)2

and τo =
1√

µminµmax

and the corresponding optimal semi-convergence factor ν(H(ωo, τo)) is

ν(H(ωo, τo)) =

√
µmax −

√
µmin√

µmax +
√
µmin

.

4. Numerical results

In this section, we provide numerical experiments to examine the effective-
ness of the PIU method studied in Section 3 for solving the singular saddle
point problem (1). In Tables 3 to 8, Iter denotes the number of iteration steps,
CPU denotes the elapsed CPU time in seconds, and CPU1 denotes the elapsed
CPU time excluding the computational time of Q† for the singular case of Q
or the Cholesky factorization time of Q for the nonsingular case of Q.

Example 4.1 ([21]). We consider the saddle point problem (1), in which

A =

(

I ⊗ T + T ⊗ I 0
0 I ⊗ T + T ⊗ I

)

∈ R
2p2×2p2

,

B =
(

B̂ B̃
)

=
(

B̂ b1 b2
)

∈ R
2p2×(p2+2), B̂ =

(

I ⊗ F

F ⊗ I

)

∈ R
2p2×p2

,

b1 = B̂

(

ep2/2

0

)

, b2 = B̂

(

0
ep2/2

)

, ep2/2 = (1, 1, . . . , 1)T ∈ R
p2/2,

T =
1

h2
· tridiag(−1, 2,−1) ∈ R

p×p, F =
1

h
· tridiag(−1, 1, 0) ∈ R

p×p,

with ⊗ denoting the Kronecker product and h = 1
p+1 the discretization mesh

size. For this example, m = 2p2 and n = p2 + 2. Thus the total number of
variables is 3p2+2. We choose the right hand side vector (fT ,−gT )T such that
the exact solution of the saddle point problem (1) is (xT

∗ , y
T
∗ )

T = (1, 1, . . . , 1)T ∈
Rm+n. Numerical results for this example are listed in Tables 3 to 5.

Example 4.2. Consider the Stokes equations of the following form: find u

and v such that

(17)

{

−△u+∇w = f in Ω

−∇ · u = 0 in Ω,

where Ω = (0, 1)×(0, 1), u is a vector-valued function representing the velocity,
and w is a scalar function representing the pressure. The boundary conditions
are u = (0, 0)T on the three fixed walls (x = 0, y = 0, x = 1) and u =
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(1, 0)T on the moving wall (y = 1). Dividing Ω into a uniform grid with
mesh size h = 1

p and discretizing (17) by using MAC (marker and cell) finite

difference scheme [9, 12], the singular saddle point problem (1) is obtained,
where A ∈ R

2p(p−1)×2p(p−1) is a symmetric positive definite matrix and B =
(

B̂ B̃
)

∈ R2p(p−1)×p2

is a rank-deficient matrix of rank(B) = p2 − 1 with

B̂ ∈ R2p(p−1)×(p2−1) and B̃ ∈ R2p(p−1). For this example, m = 2p(p− 1) and
n = p2. Thus the total number of variables is 3p2 − 2p. We also choose the
right hand side vector (fT ,−gT )T such that the exact solution of the saddle
point problem (1) is (xT

∗ , y
T
∗ )

T = (1, 1, . . . , 1)T ∈ R
m+n. Numerical results for

this example are listed in Tables 6 to 8.

The symmetric positive definite matrices P used in the PIU method are
chosen in three different ways. The first choice is P = A which reduces PIU to
PU. The second choice is P = (E − F )E−1(E − F )T , where A = E − F − FT

is a splitting of the symmetric positive definite matrix A with E a diagonal
matrix and F a strictly lower triangular matrix. The last choice is P = L0L

T
0 ,

where A = L0L
T
0 −R0 is a splitting of A obtained by an incomplete Cholesky

factorization of A with no fill-in.
For the singular case of Q, the preconditioning matrices Q are chosen as in

Table 1. Notice that Q† is computed only once using the Matlab function pinv

with a drop tolerance, and then it is stored for later use. For the nonsingular
case of Q, the preconditioning matrices Q are chosen as in Table 2, where Q̂

denotes a block diagonal matrix consisting of two submatrices B̂T Â−1B̂ and
B̃T B̃. The PIU algorithm for the nonsingular case of Q is the same as that for
the singular case of Q except that Q−1 is used instead of Q†.

In all experiments, the initial vector was set to the zero vector. From now on,
let ‖·‖ denote the L2-norm. The iterations for the PIU method are terminated
if the current iteration satisfies RES < 10−6, where RES is defined by

RES =

√

‖f −Axk −Byk‖2 + ‖g −BTxk‖2
√

‖f‖2 + ‖g‖2
.

All numerical tests are carried out on a PC equipped with Intel Core i5-
4570 3.2GHz CPU and 8GB RAM using Matlab R2014b. In Tables 3 to 8,
we report the numerical results for two different values of m and n and four
cases of the singular and nonsingular matrices Q. For the elapsed CPU time,
every experiment is repeated five times. The best and the worst ones out of 5
CPU times are discarded, and then the average of the remaining 3 CPU times
is reported in Tables 3 to 8.

The PIU method proposed in this paper depends on the parameters to be
used. For the case of P = A, the parameters ω and τ are chosen as the optimal
parameters stated in Corollary 3.4. For other cases of P , the parameters are
chosen as the quasi-optimal parameters stated in Theorem 3.3. More specifi-
cally, we first compute µmin, µmax, ηmin and ηmax, which can be easily computed
using Matlab by computing only the smallest and largest nonzero eigenvalues.
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And then the optimal parameters are computed using the formula in Corol-
lary 3.4, and the quasi-optimal parameters can be computed using Matlab by
solving the cubic equation in Theorem 3.3.

Table 1. Choices of the singular matrix Q.

Case Number Q Description
I BTM−1B M = diag(A)
II BTM−1B M = tridiag(A)

Table 2. Choices of the nonsingular matrix Q with Q̂ =
Diag(B̂T Â−1B̂, B̃T B̃).

Case Number Q Description

III Q̂ Â = diag(A)

IV tridiag(Q̂) Â = tridiag(A)

Table 3. Performance of the PIU method with P = A for
Example 4.1. (Iter: the number of iterations, ω and τ : op-
timal parameters, CPU : total CPU time, CPU1: CPU time
excluding computational time of Q† or Choelsky factorization
time of Q.)

Case I of Q Case II of Q
m n ω τ Iter CPU CPU1 ω τ Iter CPU CPU1

1152 578 0.2489 0.1423 131 0.214 0.129 0.3307 0.1985 90 0.175 0.090
2048 1026 0.1956 0.1084 174 0.767 0.362 0.2635 0.1519 120 0.657 0.252

Case III of Q Case IV of Q
m n ω τ Iter CPU CPU1 ω τ Iter CPU CPU1

1152 578 0.2489 0.1423 131 0.175 0.132 0.5692 2.9447 44 0.048 0.042
2048 1026 0.1956 0.1084 174 0.415 0.311 0.5115 3.3270 52 0.099 0.075

The PIU methods with nonsingular preconditioning matrix Q performs bet-
ter than those with singular Q (see CPU in Tables 3 to 8). The reason is as
follows: For nonsingularQ, Q−1b is computed using Cholesky factorization of Q
without constructing Q−1 explicitly, so computational cost is cheap. For singu-
lar Q, Q† b is computed using matrix-times-vector operation after constructing
Q† explicitly, which is very time-consuming. Note that Q† is constructed using
the singular value decomposition of Q, which requires a lot of computational
amount. If we exclude the construction time of Q† for singular Q and the
Cholesky factorization time for nonsingular Q, then the PIU method with sin-
gular Q is comparable to that with nonsingular Q (see CPU1 in Tables 3 to
8).
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Table 4. Performance of the PIU method with P = (E −
F )E−1(E − F )T for Example 4.1. (Iter: the number of iter-
ations, ω and τ : quasi-optimal parameters, CPU : total CPU
time, CPU1: CPU time excluding computational time of Q†

or Choelsky factorization time of Q.)

Case I of Q Case II of Q
m n ω τ Iter CPU CPU1 ω τ Iter CPU CPU1

1152 578 1.7657 0.0626 219 0.131 0.046 1.8654 0.0588 232 0.135 0.050
2048 1026 1.8494 0.0377 332 0.582 0.177 1.9177 0.0347 360 0.597 0.192

Case III of Q Case IV of Q
m n ω τ Iter CPU CPU1 ω τ Iter CPU CPU1

1152 578 1.7657 0.0626 219 0.131 0.053 0.9617 1.8293 238 0.056 0.031
2048 1026 1.8494 0.0377 332 0.345 0.149 0.9580 1.8482 318 0.119 0.065

Table 5. Performance of the PIU method with P = L0L
T
0 for

Example 4.1. (Iter: the number of iterations, ω and τ : quasi-
optimal parameters, CPU : total CPU time, CPU1: CPU time
excluding computational time of Q† or Choelsky factorization
time of Q.)

Case I of Q Case II of Q
m n ω τ Iter CPU CPU1 ω τ Iter CPU CPU1

1152 578 1.3236 0.0910 176 0.122 0.037 1.4733 0.0811 174 0.121 0.036
2048 1026 1.4259 0.0568 250 0.551 0.146 1.5388 0.0489 259 0.555 0.150

Case III of Q Case IV of Q
m n ω τ Iter CPU CPU1 ω τ Iter CPU CPU1

1152 578 1.3236 0.0910 176 0.104 0.040 0.7849 1.8970 177 0.041 0.024
2048 1026 1.4259 0.0568 250 0.257 0.113 0.7844 1.9042 236 0.088 0.047

Table 6. Performance of the PIU method with P = A for
Example 4.2. (Iter: the number of iterations, ω and τ : op-
timal parameters, CPU : total CPU time, CPU1: CPU time
excluding computational time of Q† or Choelsky factorization
time of Q.)

Case I of Q Case II of Q
m n ω τ Iter CPU CPU1 ω τ Iter CPU CPU1

1104 576 0.2442 0.1392 132 0.205 0.125 0.3246 0.1939 89 0.169 0.086
1984 1024 0.1895 0.1047 177 0.775 0.370 0.2555 0.1466 119 0.677 0.248

Case III of Q Case IV of Q
m n ω τ Iter CPU CPU1 ω τ Iter CPU CPU1

1104 576 0.2442 0.1392 132 0.176 0.130 0.0949 22.49 452 0.484 0.402
1984 1024 0.1895 0.1047 177 0.423 0.318 0.0707 29.94 630 1.177 1.013

For the nonsingular case of Q, Case IV gives better performance than Case
III for Example 4.1 since Case IV of Q is much sparser than Case III of Q,
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Table 7. Performance of the PIU method with P = (E −
F )E−1(E − F )T for Example 4.2. (Iter: the number of iter-
ations, ω and τ : quasi-optimal parameters, CPU : total CPU
time, CPU1: CPU time excluding computational time of Q†

or Choelsky factorization time of Q.)

Case I of Q Case II of Q
m n ω τ Iter CPU CPU1 ω τ Iter CPU CPU1

1104 576 1.7489 0.0672 239 0.132 0.052 1.8550 0.0634 255 0.138 0.055
1984 1024 1.8410 0.0399 368 0.607 0.202 1.9127 0.0369 399 0.649 0.220

Case III of Q Case IV of Q
m n ω τ Iter CPU CPU1 ω τ Iter CPU CPU1

1104 576 1.7489 0.0672 239 0.130 0.057 0.3201 7.7888 792 0.235 0.128
1984 1024 1.8410 0.0399 368 0.367 0.164 0.3091 8.1193 1262 0.630 0.313

Table 8. Performance of the PIU method with P = L0L
T
0 for

Example 4.2. (Iter: the number of iterations, ω and τ : quasi-
optimal parameters, CPU : total CPU time, CPU1: CPU time
excluding computational time of Q† or Choelsky factorization
time of Q.)

Case I of Q Case II of Q
m n ω τ Iter CPU CPU1 ω τ Iter CPU CPU1

1104 576 1.3034 0.0971 197 0.120 0.040 1.4599 0.0871 196 0.126 0.043
1984 1024 1.4146 0.0599 301 0.575 0.170 1.5321 0.0517 293 0.595 0.166

Case III of Q Case IV of Q
m n ω τ Iter CPU CPU1 ω τ Iter CPU CPU1

1104 576 1.3034 0.0971 197 0.107 0.047 1.6239 0.0391 462 0.140 0.074
1984 1024 1.4146 0.0599 301 0.298 0.136 1.6380 0.0221 982 0.494 0.251

whereas Case IV gives worse performance than Case III for Example 4.2 since
the convergence rate for Case IV is too slow as compared with Case III. For the
singular case of Q, Q† has almost the same computational complexity between
Case I and Case II, so performance (i.e., CPU time) depends on convergence
rate (i.e., Iter). As can be seen in Tables 3 to 8, P = L0L

T
0 performs best of

three forms of P , and P = A provides the fastest convergence rate of three
forms. However P = A performs worst since its computational cost for each
iteration is much higher than others.

For singular preconditioning matrix Q, we only considered the form of Q =
BTM−1B, where M is a SPD matrix which approximates P , which restricts
the choices of Q. Further research is needed to study semi-convergence analysis
for other forms of singular matrix Q, so that we can try many different kinds
of Q in order to achieve the best possible performance of the PIU method.
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5. Conclusions

In this paper, we provide semi-convergence analysis of the PIU method with
singular preconditioner for solving singular saddle point problems. Numerical
experiments show that the PIU method with nonsingular preconditioning ma-
trix Q performs better than that with singular Q. The reason is that the PIU
method with singular Q takes a lot of CPU time for constructing Q†. If we
have an efficient algorithm for computing Q†b for a given vector b, then the
PIU method with singular Q is comparable to that with nonsingular Q.

For singular preconditioning matrix Q, we only considered the form of
Q = BTM−1B, where M is a SPD matrix which approximates A or P , which
restricts the choices of Q. Hence, future work will include semi-convergence
analysis for other forms of singular matrix Q and development of an efficient
algorithm for computing Q†b for a given vector b.
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