References
-
H. Dan, and H. Huang, Multiplication operators defined by a class of polynomials on
$L^2_{\alpha}({\mathbb{D}}^2)$ , Integral Equations Operator Theory 80 (2014), no. 4, 581-601. https://doi.org/10.1007/s00020-014-2176-3 - R. G. Douglas, M. Putinar, and K. Wang, Reducing subspaces for analytic multipliers of the Bergman space, J. Funct. Anal. 263 (2012), no. 6, 1744-1765. https://doi.org/10.1016/j.jfa.2012.06.008
- R. G. Douglas, S. Sun, and D. Zheng, Multiplication operators on the Bergman space via analytic continuation, Adv. Math. 226 (2011), no. 1, 541-583. https://doi.org/10.1016/j.aim.2010.07.001
- K. Guo and H. Huang, On multiplication operators on the Bergman space: Similarity, unitary equivalence and reducing subspaces, J. Operator Theory 65 (2011), no. 2, 355-378.
- K. Guo and H. Huang, Multiplication operators defined by covering maps on the Bergman space: the connection between operator theory and von Neumann algebras, J. Funct. Anal. 260 (2011), no. 4, 1219-1255. https://doi.org/10.1016/j.jfa.2010.11.002
- K. Guo and H. Huang, Geometric constructions of thin Blaschke products and reducing subspace problem, Proc. Lond. Math. Soc. 109 (2014), no. 4, 1050-1091. https://doi.org/10.1112/plms/pdu027
- K. Guo and H. Huang, Multiplication Operators on the Bergman Space, Lecture Notes in Mathematics 2145, Springer-Verlag Berlin Heidelberg 2015.
- K. Guo, S. Sun, D. Zheng, and C. Zhong, Multiplication operators on the Bergman space via the Hardy space of the bidisk, J. Reine Angew. Math. 628 (2009), 129-168.
- J. Hu, S. Sun, X. Xu, and D. Yu, Reducing subspace of analytic Toeplitz operators on the Bergman space, Integral Equations Operator Theory 49 (2004), no. 3, 387-395. https://doi.org/10.1007/s00020-002-1207-7
- Y. Lu and X. Zhou, Invariant subspaces and reducing subspaces of weighted Bergman space over bidisk, J. Math. Soc. Japan 62 (2010), no. 3, 745-765. https://doi.org/10.2969/jmsj/06230745
- Y. Shi and Y. Lu, Reducing subspaces for Toeplitz operators on the polydisk, Bull. Korean Math. Soc. 50 (2013), no. 2, 687-696. https://doi.org/10.4134/BKMS.2013.50.2.687
- M. Stessin and K. Zhu, Reducing subspaces of weighted shift operators, Proc. Amer. Math. Soc. 130 (2002), no. 9, 2631-2639. https://doi.org/10.1090/S0002-9939-02-06382-7
- S. L. Sun and Y. Wang, Reducing subspaces of certain analytic Toeplitz operators on the Bergman space, Northeast. Math. J. 14 (1998), no. 2, 147-158.
- S. Sun, D. Zheng, and C. Zhong, Classification of reducing subspaces of a class of multiplication operators on the Bergman space via the Hardy space of the bidisk, Canad. J. Math. 62 (2010), no. 2, 415-438. https://doi.org/10.4153/CJM-2010-026-4
-
X. Wang, H. Dan, and H. Huang, Reducing subspaces of multiplication operators with the symbol
${\alpha}z^k$ +${\beta}w^l$ on$L^2_{\alpha}({\mathbb{D}}^2)$ , Sci. China Math. 58 (2015), doi:10.1007/s11425-015-4973-9. - K. Zhu, Reducing subspaces for a class of multiplication operators, J. Lond. Math. Soc. 62 (2000), no. 2, 553-568. https://doi.org/10.1112/S0024610700001198
Cited by
- Reducing subspaces for a class of non-analytic Toeplitz operators on the bidisk vol.445, pp.1, 2017, https://doi.org/10.1016/j.jmaa.2016.08.012