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REDUCING SUBSPACES FOR A CLASS OF TOEPLITZ

OPERATORS ON THE BERGMAN SPACE OF THE BIDISK

Mohammed Albaseer, Yufeng Lu, and Yanyue Shi

Abstract. In this paper, we completely characterize the nontrivial re-
ducing subspaces of the Toeplitz operator T

zN
1

zM
2

on the Bergman space

A2(D2), where N and M are positive integers.

1. Introduction

Let D be the open unit disk in the complex plane C. For −1 < α < ∞, let
L2(D, dAα) be the Hilbert space of square integrable functions on D with the
inner product

〈f, g〉α =

∫

D

f(z)g(z)dAα(z), f, g ∈ A2
α(D),

where
dAα(z) = (α+ 1)(1− |z|2)αdA(z),

and dA is the normalized area measure on D.
The weighted Bergman space A2

α(D) is the subspace of L
2(D, dAα) consisting

of all the analytic functions in D. We denote

γn = ‖zn‖α =

√

n!Γ(2 + α)

Γ(n+ α+ 2)

for n = 0, 1, 2, . . . . Therefore,

‖f‖2α =

+∞
∑

n=0

γ2
n|an|

2 < ∞,

where f(z) =
∑+∞

n=0 anz
n ∈ A2

α(D). Especially when α = 0, we write A2(D) =

A2
0(D). In this case, γn =

√

1
n+1 .
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Denote by D2 = D× D the bidisk. The Bergman space A2(D2) is the space
of all holomorphic functions in L2(D2, dµ) where dµ(z) = dA(z1)dA(z2). For

multi-index β = (β1, β2), denote zβ = zβ1

1 zβ2

2 and

eβ =
zβ

γβ1
γβ2

.

Then {eβ}β�0 (β � 0 means that β1 ≥ 0 and β2 ≥ 0) is an orthogonal basis in
A2(D2).

For a bounded measurable function f ∈ L∞(D2), the Toeplitz operator with
symbol f is defined by Tfh = P (fh) for every h ∈ A2(D2), where P is the
Bergman orthogonal projection from L2(D2, dµ) onto A2(D2).

Recall that for a bounded linear operator T on a Hilbert space H , a closed
subspace M is called a reducing subspace of the operator T , if T (M) ⊂ M
and T ∗(M) ⊂ M. A reducing subspace M is said to be minimal if there is no
nonzero reducing subspace N such that N is properly contained in M.

On the Bergman space over D, it is proved that TB has just two non-trivial
reducing subspaces [13, 16], where B is the product of two Blaschke factors.
In [12], M. Stessin and K. Zhu gave a complete description of the reducing
subspaces of weighted unilateral shift operators of finite multiplicity. In partic-
ular, Tzn has n distinct minimal reducing subspaces. If B is a finite Blaschke
product (order n ≥ 2), the number of nontrivial minimal reducing subspaces
of TB equals the number of connected components of the Riemann surface of
B−1 ◦ B over D (see [2, 3, 4, 8, 9, 14] for details). Further, if B is an infinite
Blaschke product or a covering map, the relative research can be founded in
[5, 6, 7].

On the Bergman space of bidisk, Y. Lu and X. Zhou [10] characterized the
reducing subspaces of TzN

1
zN
2
, TzN

1
and TzN

2
, respectively. The reducing sub-

spaces of TzN
1
zM
2

on the weighted Bergman space A2
α(D

2) have been completely

described in [11]. For p = αzk + βwl, the minimal reducing subspaces of Tp on
A2(D2) and the commutant algebra V∗(p) = {Tp, T

∗
p }

′ was described in [1, 15].
In this paper, we mainly consider the reducing subspaces for the Toeplitz

operator TzN
1
zM
2

on the Bergman space A2(D2), where N and M are positive
integers.

2. Main results

In this section, we will give a complete characterization of the reducing
subspaces of TzN

1
zM
2
. To state our results, we need some notations and lemmas.

Through out this paper, denote T = TzN
1
zM
2
, where N and M are positive

integers. Denote by [f ] the reducing subspace of T generated by f ∈ A2(D2).
Let N be the set of all the nonnegative integers.
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By direct calculation, we know that

T h(zk1z
l
2) =

{

γ2
l

γ2
l−hM

zk+hN
1 zl−hM

2 , if l ≥ hM

0, if l < hM
;

T ∗h(zk1z
l
2) =

{

γ2
k

γ2
k−hN

zk−hN
1 zl+hM

2 , if k ≥ hN

0, if k < hN

for k, l, h ∈ N. Set

E0 = {(k, l) ∈ N× N : 0 ≤ k < N, 0 ≤ l < M},

E1 = {(k, l) ∈ N× N : k ≥ 2N},

E2 = {(k, l) ∈ N× N : l ≥ 2M, 0 ≤ k < 2N},

E3 = {(k, l) ∈ N× N : N ≤ k < 2N,M ≤ l < 2M},

E4 = {(k, l) ∈ N× N : 0 ≤ k < N,M ≤ l < 2M},

E5 = {(k, l) ∈ N× N : 0 ≤ l < M,N ≤ k < 2N}.

Clearly,

A2(D2) =

5
⊕

i=0

span{zp1z
q
2 : (p, q) ∈ Ei}.

Notice that M0 = span{zp1z
q
2 : (p, q) ∈ E0} is a reducing subspace of T . To

find other reducing subspaces, we first study the orthogonal decomposition of
zk1z

l
2 with respect to M.

Lemma 2.1. Suppose M ⊂ M⊥
0 is a reducing subspace of T . Let PM be the

orthogonal projection from A2(D2) onto M.

(i) If (k, l) ∈ E1 ∪ E2 ∪ E3, then PMzk1z
l
2 = λzk1 z

l
2 with some λ ∈ C.

(ii) If (k, l) ∈ E4, then

PMzk1 z
l
2 ∈ span{zn1 z

m
2 : (n,m) ∈ E4}.

(iii) If (k, l) ∈ E5, then

PMzk1 z
l
2 ∈ span{zn1 z

m
2 : (n,m) ∈ E5}.

Proof. Let k, l ∈ N. Since M⊥M0, 〈PM(zk1 z
l
2), z

p
1z

q
2〉 = 0 for (p, q) ∈ E0.

In the following, we consider the inner product 〈PM(zk1z
l
2), z

p
1z

q
2〉 for (p, q) ∈

5
⋃

i=1

Ei.

For every nonnegative integer h satisfying l ≥ hM ,

T h∗T h(zk1z
l
2) =

γ2
l γ

2
k+hN

γ2
l−hMγ2

k

zk1z
l
2.(1)

By computation,

γ2
l γ

2
k+hN

γ2
l−hMγ2

k

〈PM(zk1z
l
2), z

p
1z

q
2〉 = 〈PMT h∗T h(zk1 z

l
2), z

p
1z

q
2〉
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= 〈PM(zk1 z
l
2), T

h∗T h(zp1z
q
2)〉

=

{

γ2
qγ

2
p+hN

γ2
q−hM

γ2
p

〈PM(zk1 z
l
2), z

p
1z

q
2〉, q ≥ hM

0, q < hM.

Recall that [s] = max{n ∈ Z : n ≤ s} for real number s. By above equality,
we get that if 〈PM(zk1 z

l
2), z

p
1z

q
2〉 6= 0, then

(2)
γ2
l γ

2
k+hN

γ2
l−hMγ2

k

=
γ2
qγ

2
p+hN

γ2
q−hMγ2

p

for 0 ≤ h ≤ [ l
M
], q ≥ [ l

M
]M .

Equivalently,

(3)
(k + 1)(q + 1)

(p+ 1)(l + 1)
=

(k + 1 + hN)(q + 1− hM)

(p+ 1 + hN)(l + 1− hM)

for 0 ≤ h ≤ [ l
M
], q ≥ [ l

M
]M .

(i) If (k, l) ∈ E1 ∪ E2 ∪ E3, we will show that the equality (2) holds if and
only if p = k and q = l.

Case one: l ≥ 2M . Let g1(λ) = (k + 1)(q + 1)(p + 1 + λN)(l + 1 − λM),
g2(λ) = (p + 1)(l + 1)(k + 1 + λN)(q + 1 − λM) and g(λ) = g1(λ) − g2(λ).
Since l ≥ 2M , we have g(0) = g(1) = g(2) = 0. Considering g(λ) is a quadratic
polynomial, we have g(λ) ≡ 0 on C. Therefore, g1 and g2 have the same zeros,
i.e.,







(k + 1)(q + 1)NM = (p+ 1)(l + 1)NM

(k + 1)(q + 1)p+1
N

= (p+ 1)(l + 1)k+1
N

(k + 1)(q + 1) l+1
M

= (p+ 1)(l + 1) q+1
M

.

It follows that p = k and q = l.
Case two: k ≥ 2N . Replacing T ∗T by TT ∗ in Case one, we can get the

desire result. The details are listed as follows.
Since

T hT h∗(zk1 z
l
2) =

γ2
kγ

2
l+hM

γ2
k−hNγ2

l

zk1z
l
2, ∀0 ≤ h ≤ [

k

N
],

we know that

γ2
kγ

2
l+hM

γ2
k−hNγ2

l

〈PM(zk1z
l
2), z

p
1z

q
2〉 = 〈PMT hT h∗(zk1z

l
2), z

p
1z

q
2〉

= 〈PM(zk1 z
l
2), T

hT h∗(zp1z
q
2)〉

=

{

γ2
pγ

2
q+hM

γ2
p−hN

γ2
q

〈PM(zk1 z
l
2), z

p
1z

q
2〉 if p ≥ hN

0 if p < hN.

Therefore, 〈PM(zk1 z
l
2), z

p
1z

q
2〉 6= 0 will give that

γ2
kγ

2
l+hM

γ2
k−hNγ2

l

=
γ2
pγ

2
q+hM

γ2
p−hNγ2

q

(4)
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for 0 ≤ h ≤ [ k
N
] and p ≥ [ k

N
]N . Equivalently,

(5)
(k + 1)(q + 1)

(p+ 1)(l + 1)
=

(k + 1− hN)(q + 1 + hM)

(p+ 1− hN)(l + 1 + hM)

for 0 ≤ h ≤ [ k
N
] and p ≥ [ k

N
]N . So when k ≥ 2N , the above equality follows

for h = 0, 1, 2. In this case we will get p = k and q = l by the same arguments
as the case l ≥ 2M has done.

Case three: (k, l) ∈ E3 = {(n,m) ∈ N
2 : N ≤ n < 2N,M ≤ m < 2M}.

In this case, [ k
N
] ≥ 1 and [ l

M
] ≥ 1. Then equalities (3) and (5) hold for

h = 0, 1. Recall that g(λ) = g1(λ) − g2(λ), where g1(λ) = (k + 1)(q + 1)(p +
1+ λN)(l+ 1− λM) and g2(λ) = (p+1)(l+ 1)(k+ 1+ λN)(q +1− λM). We
get g(0) = g(1) = g(−1) = 0. Therefore, we obtain that p = k and q = l.

(ii) Suppose that (k, l) ∈ E4. We need only prove that

PM(zk1 z
l
2) ⊥ span{zn1 z

m
2 : (n,m) ∈ (

3
⋃

i=1

Ei)
⋃

E5}.

If (n,m) ∈ E1 ∪E2 ∪E3, the conclusion (i) implies that PMzn1 z
m
2 = λzn1 z

m
2

for some λ ∈ C. Thus

〈PMzk1z
l
2, z

n
1 z

m
2 〉 = 〈zk1z

l
2, PMzn1 z

m
2 〉 = λ〈zk1z

l
2, z

n
1 z

m
2 〉 = 0.

That is, PMzk1z
l
2 ⊥ span{zp1z

q
2 : (p, q) ∈ E1 ∪E2 ∪ E3}.

If (n,m) ∈ E5 = {(k, l) ∈ N× N : 0 ≤ l < M,N ≤ k < 2N},

〈PMzk1z
l
2, z

n
1 z

m
2 〉 =

γ2
l−Mγ2

k

γ2
l γ

2
k+N

〈PMT ∗Tzk1z
l
2, z

n
1 z

m
2 〉

=
γ2
l−Mγ2

k

γ2
l γ

2
k+N

〈TPMzk1z
l
2, T z

n
1 z

m
2 〉 = 0,

where the last equality comes from span{zp1z
q
2 : (p, q) ∈ E5} ⊆ KerT . Thus

PMzk1 z
l
2 ⊥ span{zp1z

q
2 : (p, q) ∈ E5}.

(iii) Replacing T ∗T by TT ∗ in (ii), we get the desired result. �

Remark 2.1. Let M ⊂ M⊥
0 is a nonzero reducing subspace of T . In (i) of

Lemma 2.1, we indeed get that λ = 0 or 1, that is zk1z
l
2 ∈ M or zk1z

l
2 ∈ M⊥

for each (k, l) ∈ E1 ∪ E2 ∪ E3.
If zk1z

l
2 ∈ M, then

(6) [zk1z
l
2] = span{zk−hN

1 zl+hM
2 : k − hN ≥ 0, l + hM ≥ 0, h ∈ Z}

is a minimal reducing subspace of T , containing inM. Moreover, if zk1z
l
2, z

p
1z

q
2 ∈

M and (k, l), (p, q) ∈ E1 ∪ E2 ∪ E3, then it’s clear that either [zk1 z
l
2]⊥[zp1z

q
2 ] or

[zk1z
l
2] = [zp1z

q
2 ]. So for any non-zero function f(z) =

∑

(k,l)∈E1∪E2∪E3

ak,lz
k
1z

l
2,

[f ] is the direct sum of some minimal reducing subspace as (6).

We define two equivalences on E4 and E5 respectively by:
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(i) for (p, q), (k, l) ∈ E4, (p, q) ∼1 (k, l) ⇔ (k+1)(q+1)
(p+1)(l+1) = (k+1+N)(q+1−M)

(p+1+N)(l+1−M) ;

(ii) for (p, q), (k, l) ∈ E5, (p, q) ∼2 (k, l) ⇔ (k+1)(q+1)
(p+1)(l+1) = (k+1−N)(q+1+M)

(p+1−N)(l+1+M) .

It is easy to check that

(i) (p, q) ∈ E4 ⇔ (p+N, q −M) ∈ E5;
(ii) for (p, q), (k, l) ∈ E4, (p, q) ∼1 (k, l) ⇔ (p+N, q−M) ∼2 (k+N, l−M);
(iii) for (p, q), (k, l) ∈ E5, (p, q) ∼2 (k, l) ⇔ (p−N, q+M) ∼1 (k−N, l+M).

For (n,m) ∈ E4 and (k, l) ∈ E5, let

Pn,m : A2(D2) → span{zp1z
q
2 : (p, q) ∼1 (n,m), (p, q) ∈ E4},

Qk,l : A
2(D2) → span{zk1z

l
2 : (p, q) ∼2 (k, l), (p, q)) ∈ E5}

be two orthogonal projections. For f ∈ A2(D2) and Pn,mf 6= 0, we have

(7) [Pn,mf ] = span{Pn,mf, TPn,mf},

since T ∗Pn,mf = 0, T 2Pn,mf = 0 and T ∗TPn,mf =
γ2
mγ2

n+N

γ2
m−M

γ2
n

Pn,mf . Similarly,

if f ∈ M and Qk,lf 6= 0, then

(8) [Qk,lf ] = span{Qk,lf, T
∗Qk,lf}.

Lemma 2.2. Let M ⊂ M⊥
0 be a reducing subspace of T and (n,m) ∈ E4.

Then the following statements hold.

(a) If f ∈ M, then [Pn,mf ] ⊂ M and [Qn+N,m−Mf ] ⊂ M.

(b) If f1, f2 ∈ Pn,mM and f1⊥f2, then [f1]⊥[f2].
(c) Pn,mT ∗f = T ∗Qn+N,m−Mf and TPn,mf = Qn+N,m−MTf , ∀f ∈ M.

(d) If f ∈ M, then [Pn,mf ] = [Qn+N,m−MTf ] and [Qn+N,m−Mf ] =
[Pn,mT ∗f ].

(e) Pn,mM⊕Qn+N,m−MM ⊂ M is a reducing subspace of T .

Proof. (a) For every f ∈ M, we know that PMPn,mf = Pn,mf , since PMPn,m

= Pn,mPM, which obtained by the following simple facts:

(i) if (k, l) ∈ E4, then PMzk1z
l
2 ∈ span{zp1z

q
2 : (p, q) ∈ E4};

(ii) if (k, l) /∈ E4, then PMzk1z
l
2⊥span{zp1z

q
2 : (p, q) ∈ E4}.

So Pn,mf ∈ M, which implies that [Pn,mf ] ⊂ M.
Similarly, we have PMQn+N,m−Mf = Qn+N,m−Mf , which shows that

Qn+N,m−Mf ∈ M. Thus [Qn+N,m−Mf ] ⊂ M.
(b) It is clear that Tf1, T f2 ∈ span{zk1z

l
2 : (k, l) ∈ E5} and

〈Tf1, T f2〉 = 〈T ∗Tf1, f2〉 =
γ2
n+Nγ2

m

γ2
nγ

2
m−M

〈f1, f2〉 = 0.

Equality (7) shows that

[f1] = span{f1, T f1}, [f2] = span{f2, T f2}.

So [f1]⊥[f2].



REDUCING SUBSPACES FOR A CLASS OF TOEPLITZ OPERATORS 1655

(c) For every (n,m) ∈ E4, let

Mn,m = span{zk1z
l
2 : (k, l) ∼1 (n,m), (k, l) ∈ E4},

Mn+N,m−M = span{zk1z
l
2 : (k, l) ∼2 (n+N,m−M), (k, l) ∈ E5}.

ThenMn,m andMn+N,m−M are finite dimension, and the following statements
hold:

(i) TMn,m = Mn+N,m−M and T ∗Mn+N,m−M = Mn,m;
(ii) T (M⊥

n,m) ⊂ M⊥
n+N,m−M and T ∗(M⊥

n+N,m−M) ⊂ M⊥
n,m.

Therefore, TPn,mf = Qn+N,m−MTf and Pn,mT ∗f = T ∗Qn+N,m−Mf for any
f ∈ M.

(d) By equality (7), conclusion (c) and

T ∗TPn,mf =
γ2
n+Nγ2

m

γ2
nγ

2
m−M

Pn,mf,(9)

we have

[Qn+N,m−MTf ] = span{Qn+N,m−MTf, T ∗Qn+N,m−MTf}

= span{TPn,mf} ⊕ span{T ∗TPn,mf}

= span{TPn,mf} ⊕ span{Pn,mf}

= [Pn,mf ].

Similarly, [Qn+N,m−Mf ] = [Pn,mT ∗f ] comes from equality (8), conclusion (c)
and

TT ∗Qn+n,m−Mf =
γ2
n+Nγ2

m

γ2
nγ

2
m−M

Qn+N,m−Mf.(10)

(e) By equalities (9), (10) and conclusion (c), we have

Qn+N,m−MM = TT ∗(Qn+N,m−MM) = TPn,mT ∗M,(11)

Pn,mM = T ∗T (Pn,mM) = T ∗Qn+N,m−MTM.

Therefore, we only need to show that Pn,mM⊕Qn+N,m−MM is an invariant
subspace of T and T ∗. In fact,

T (Pn,mM⊕Qn+N,m−MM) = TPn,mM = Qn+N,m−MM,

where the last equality comes from TPn,mf = Qn+N,m−MTf ∈ Qn+N,m−MM
and Qn+N,m−Mf ∈ TPn,mT ∗M ⊂ TPn,mM for all f ∈ M. Therefore,

T (Pn,mM⊕Qn+N,m−MM) ⊂ Pn,mM⊕Qn+N,m−MM.

Similarly, we can prove that

T ∗(Pn,mM⊕Qn+N,m−MM) = T ∗Qn+N,m−MM = Pn,mM.

So we finish the proof. �
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Remark 2.2. In the prove of (e), we also get that

[Pn,mM] = Pn,mM⊕Qn+N,m−MM = [Qn+N,m−MM],

where [Pn,mM] and [Qn+N,m−MM] are the reducing subspaces generated by
Pn,mM and Qn+N,m−MM, respectively.

Theorem 2.1. Let M ⊂ M⊥0 be a non-zero reducing subspace of T on the
bidisk. ThenM =M1 ⊕M2, where

(i) M1 is a direct sum of minimal reducing subspace [zp1z
q
2 ] with zp1z

q
2 ∈M

for some (p, q) ∈ E1 ∪ E2 ∪ E3;
(ii) M2 is a direct sum of minimal reducing subspace [f ] with f ∈ Pn,mM

for some (n,m) ∈ E4.

Proof. Firstly, we prove that

(12) M =M1

⊕ ⊕
(n,m)∈E

(Pn,mM
⊕

Qn+N,m−MM),

whereM1 =
⊕

(p,q)∈Λ

[zp1z
q
2 ] with Λ = {(p, q) ∈ E1∪E2∪E3 : zp1z

q
2 ∈M}, and E is

the partition of E4 by the equivalence∼1. SetHn,m=Pn,mM
⊕
Qn+N,m−MM.

On the one hand, M1

⊕ ⊕
(n,m)∈E

Hn,m ⊂ M, since M1 ⊂ M is a reducing

subspace of T , and conclusion (e) in Lemma 2.2 implies that
⊕

(n,m)∈E
Hn,m ⊂

M. On the other hand, for g = g1 + g2 ∈M with

g1(z) =
∑

(p,q)∈E1∪E2∪E3

ap,qz
p
1z
q
2 , g2(z) =

∑
(p,q)∈E4∪E5

ap,qz
p
1z
q
2 .(13)

Remark 2.1 shows that g1 ∈ M1 ⊂ M, which implies that g2 = g − g1 ∈ M.
Therefore, g2 =

∑
(n,m)∈E

(Pn,mg2 + Qn+N,m−Mg2) ∈
⊕

(n,m)∈E
Hn,m. It follows

that M is in the direct sum of M1 and {Hn,m} with (n,m) ∈ E. So we have
equality (12) holds.

Secondly, for each (n,m) ∈ E4, we prove that Hn,m is the direct sum of
minimal reducing subspaces as [f ] = span{f, Tf} with f ∈ Pn,mM. There are
some steps in the proof.

Step 1. Take 0 6= f1 ∈ Pn,mM. Then [f1] = span{f1, Tf1} ⊂ Hn,m.
Step 2. If Pn,mM 6= Cf1, take 0 6= f2 ∈ Pn,mM	 Cf1. Then

[f2] = span{f2, Tf2} ⊂ Hn,m 	 [f1].

Step 3. If Pn,mM 6= span{f1, f2}, take 0 6= f3 ∈ Pn,mM	 span{f1, f2}. Then

[f3] = span{f3, Tf3} ⊂ Hn,m 	 [f1]	 [f2].

If Pn,mM 6= span{f1, f2, f3}, continue this process. This process will stop in
finite steps, since the dimension of Hn,m is finite. Thus, we finish the proof. �
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Remark 2.3. In particular, if M is a reducing subspace generated by g =
g1 + g2 ∈ A2(D2) as in (13), then [g] = [g1]⊕ [g2] and

[g2] =
⊕

(n,m)∈E

[Pn,mg,Qn+N,m−Mg],

where [Pn,mg,Qn+N,m−Mg] is the reducing subspace generated by Pn,mg and
Qn+N,m−Mg. By conclusions (a) and (d) in Lemma 2.2 and equalities in (11),
we get [Pn,mg,Qn+N,m−Mg] = [Pn,mg, Pn,mT ∗g] = span{Pn,mg, Pn,mT ∗g} ⊕
span{Qn+N,m−Mg,Qn+N,m−MTg}.

Notice that span{Pn,mg, Pn,mT ∗g} has an orthonormal basis {e1, . . . , ek},
since the dimension of span{Pn,mg, Pn,mT ∗g} is finite. Conclusion (b) in
Lemma 2.2 shows that [ei]⊥[ej] for i 6= j. Then we get

[Pn,mg, Pn,mT ∗g] =
k

⊕

j=1

[ej ] =
k

⊕

j=1

span{ej, T ej}.

Similarly, we can prove that

[g2] =
⊕

(n,m)∈E

[Qn+N,m−Mg,Qn+N,m−MTg],

and

[Qn+N,m−Mg,Qn+N,m−MTg] =
l

⊕

j=1

[hj ] =
l

⊕

j=1

span{hj, T
∗hj},

where {h1, . . . , hl} is an orthonormal basis of

span{Qn+N,m−Mg,Qn+N,m−MTg}.

In the last part of this paper, we give some examples of the reducing sub-
spaces of TzN

1
zM
2

for the case that N = M and N 6= M , respectively.

Example 2.1. Fix a, b, c, d, e ∈ C with e 6= 0. Let

f(z1, z2) = az91z
14
2 + bz71z

15
2 + cz51z

17
2 + dz41z

19
2 + ez111 z122 ,

and [f ] be the reducing subspace of Tz10
1

z10
2

generated by f . Then

[f ] = span{f1, f2} ⊕ span{z11+10h
1 z12−10h

2 : h = −1, 0, 1},

where

f1(z1, z2) = az91z
14
2 + bz71z

15
2 + cz51z

17
2 + dz41z

19
2 ,

f2(z1, z2) =
a
3 z

19
1 z42 +

3b
8 z

17
1 z52 +

4c
9 z

15
1 z72 +

d
2z

14
1 z92 .

Proof. Notice that (11, 12) ∈ E3 and (9, 14) ∈ E4. A direct computation shows
that (9, 14) ∼1 (7, 15) ∼1 (5, 17) ∼1 (4, 19). Remark 2.1 implies that f1 =
P4,19f and z111 z122 are in M. As in Remark 2.3, there is span{P4,19f, P4,19T

∗f}
= [f1] = span{f1, f2}. Therefore we get the desired result. �
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Example 2.2. Let f(z1, z2) = z41z
14
2 + z71z

7
2 + z31z

15
2 and [f ] be the reducing

subspace of Tz5
1
z10
2

generated by f . Then

[f ] = span{z41z
14
2 + z31z

15
2 , 1

3z
9
1z

4
2 +

3
8z

8
1z

5
2} ⊕ span{z71z

7
2 , z

2
1z

17
2 }.

Proof. Notice that (7, 7) ∈ E5, (4, 14), (3, 15) ∈ E4 and (4, 14) ∼1 (3, 15). Let
f1 = P4,14f = z41z

14
2 + z31z

15
2 and f2 = Q7,7f = z71z

7
2 . Then [P4,14f, P4,14T

∗f ] =
[f1] = span{z41z

14
2 +z31z

15
2 , 13z

9
1z

4
2 +

3
8z

8
1z

5
2}, [P2,17f, P2,17T

∗f ] = [Q7,7f,Q7,7Tf ]

= [f2] = span{z71z
7
2 , z

2
1z

17
2 }. Then we finish the proof. �

Example 2.3. Let f(z1, z2) = z31z
8
2 + z71z

3
2 , and [f ] be the reducing subspace

of Tz4
1
z5
2
generated by f . Then

[f ] = span{z31z
8
2 , z

7
1z

3
2}.

Proof. Notice that (3, 8) ∈ E4, (7, 3) ∈ E5. It is easy to check that Tz4
1
z5
2
z31z

8
2 =

4
9z

7
1z

3
2 and T ∗

z4
1
z5
2

z71z
3
2 = 1

2z
3
1z

8
2 . So [z31z

8
2 ] = [z71z

3
2 ] = span{z31z

8
2 , z

7
1z

3
2}. It means

that [f ] = span{z31z
8
2 , z

7
1z

3
2}. �

Example 2.4. Let f(z1, z2) = z21z
17
2 + z41z

14
2 + z91z

4
2 + z31z

15
2 + z81z

5
2 and [f ] be

the reducing subspace of Tz5
1
z10
2

generated by f . Then

[f ] = [z21z
17
2 ]⊕ [z41z

14
2 ]⊕ [z31z

15
2 ]

= [z21z
17
2 ]⊕ [z41z

14
2 + z31z

15
2 ]⊕ [z41z

14
2 − 64

75z
3
1z

15
2 ]

= [z71z
7
2 ]⊕ [z91z

4
2 + z81z

5
2 ]⊕ [z91z

4
2 −

27
25z

8
1z

5
2 ].

Proof. Notice that (2, 17), (4, 14), (3, 15) ∈ E4, (9, 4), (8, 5) ∈ E5 and

(4, 14) ∼1 (3, 15), (9, 4) ∼2 (8, 5).

(i) Since P4,14T
∗f = T ∗(z91z

4
2 + z81z

5
2) =

1
2z

4
1z

14
2 + 4

9z
3
1z

15
2 , we have

span{P4,14f, P4,14T
∗f} = span{z41z

14
2 , z31z

15
2 }.

Therefore,

[f ] = [z21z
17
2 ]⊕ [z41z

14
2 ]⊕ [z31z

15
2 ]

= span{z21z
17
2 , z71z

7
2} ⊕ span{z41z

14
2 , z91z

4
2} ⊕ span{z31z

15
2 , z81z

5
2}.

(ii) It is easy to check that 〈z41z
14
2 − 64

75z
3
1z

15
2 , z41z

14
2 + z31z

15
2 〉 = 0 and

span{P4,14f, P4,14T
∗f} = span{z41z

14
2 + z31z

15
2 , z41z

14
2 − 64

75z
3
1z

15
2 }.

So [f ] = [z41z
14
2 + z31z

15
2 ]⊕ [z41z

14
2 − 64

75z
3
1z

15
2 ]⊕ [z21z

17
2 ].

(iii) Notice that

span{Q9,4f,Q9,4Tf} = span{z91z
4
2 + z81z

5
2 ,

1
3z

9
1z

4
2 +

3
8z

8
1z

5
2}

= span{z91z
4
2 + z81z

5
2 , z

9
1z

4
2 −

27
25z

8
1z

5
2},

where z91z
4
2 −

27
25z

8
1z

5
2⊥Q9,4f . Then

[f ] = [z71z
7
2 ]⊕ [z91z

4
2 + z81z

5
2 ]⊕ [z91z

4
2 −

27
25z

8
1z

5
2 ]. �
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Remark 2.4. In Example 2.4, since T ∗(z91z
4
2 + z81z

5
2) = 1

2z
4
1z

14
2 + 4

9z
3
1z

15
2 and

T ∗(z91z
4
2 − 27

25z
8
1z

5
2) = 1

2z
4
1z

14
2 − 12

25z
3
1z

15
2 , conclusion (d) in Lemma 2.2 implies

that [f ] = [z21z
17
2 ]⊕ [ 12z

4
1z

14
2 + 4

9z
3
1z

15
2 ]⊕ [ 12z

4
1z

14
2 − 12

25z
3
1z

15
2 ].

Moreover, let T = Tz5
1
z10
2

and g = z41z
14
2 + z91z

4
2 + z31z

15
2 , then [g] = [g +

az81z
5
2 ] = [z41z

14
2 ]⊕ [z31z

15
2 ] for a 6= 9

8 . In fact, span{P4,14(g+az81z
5
2), P4,14T

∗(g+

az81z
5
2)} = span{z41z

14
2 , z31z

15
2 }, since T ∗(z91z

4
2 + az81z

5
2) and z41z

14
2 + z31z

15
2 are

linearly independent.
For the case that a = 9

8 , we have

[g + 9
8z

8
1z

5
2 ] = span{z41z

14
2 + z31z

15
2 , z91z

4
2 +

9
8z

8
1z

5
2}

= [z41z
14
2 + z91z

4
2 ]

since T ∗(g + 9
8z

8
1z

5
2) =

1
2P4,14g.
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