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REDUCING SUBSPACES FOR A CLASS OF TOEPLITZ
OPERATORS ON THE BERGMAN SPACE OF THE BIDISK

MOHAMMED ALBASEER, YUFENG LU, AND YANYUE SHI

ABSTRACT. In this paper, we completely characterize the nontrivial re-
ducing subspaces of the Toeplitz operator T,yznm on the Bergman space
1 2

A?(D?), where N and M are positive integers.

1. Introduction

Let D be the open unit disk in the complex plane C. For —1 < a < oo, let
L?(D,dA,) be the Hilbert space of square integrable functions on D with the
inner product

(f, 9o = /D [()a@)dAa(z),  f.g € A2(D),

where
dAa(z) = (a+1)(1 — [2*)*dA(z),
and dA is the normalized area measure on .
The weighted Bergman space A2 (D) is the subspace of L?(ID, dA,,) consisting
of all the analytic functions in D. We denote

n!l(2 + «)

Yo = [[2"]|a = m

forn=0,1,2,.... Therefore,

+oo
1115 = valanl® < oo,
n=0

where f(2) = 370 a,2" € A2(D). Especially when a = 0, we write A2(D) =

. 1
AZ (D). In this case, vn = \/ 737
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Denote by D? = D x D the bidisk. The Bergman space A%(ID?) is the space
of all holomorphic functions in L?(D?,du) where du(z) = dA(z1)dA(z2). For
multi-index 8 = (31, B2), denote 2% = zflzg2 and

B

eg = .
7 YB17 B2

Then {eg}s=0 (8 = 0 means that 8; > 0 and B2 > 0) is an orthogonal basis in
A%(D?).

For a bounded measurable function f € L°(D?), the Toeplitz operator with
symbol f is defined by T¢h = P(fh) for every h € A%(D?), where P is the
Bergman orthogonal projection from L?(D?,du) onto A?(D?).

Recall that for a bounded linear operator 1" on a Hilbert space H, a closed
subspace M is called a reducing subspace of the operator T', if T(M) C M
and T*(M) C M. A reducing subspace M is said to be minimal if there is no
nonzero reducing subspace A such that A is properly contained in M.

On the Bergman space over D, it is proved that Ts has just two non-trivial
reducing subspaces [13, 16], where B is the product of two Blaschke factors.
In [12], M. Stessin and K. Zhu gave a complete description of the reducing
subspaces of weighted unilateral shift operators of finite multiplicity. In partic-
ular, T,» has n distinct minimal reducing subspaces. If B is a finite Blaschke
product (order n > 2), the number of nontrivial minimal reducing subspaces
of T's equals the number of connected components of the Riemann surface of
B~lo B over D (see [2, 3, 4, 8, 9, 14] for details). Further, if B is an infinite
Blaschke product or a covering map, the relative research can be founded in
[5, 6, 7].

On the Bergman space of bidisk, Y. Lu and X. Zhou [10] characterized the
reducing subspaces of TZ{vZéV, TZ{V and Tzév, respectively. The reducing sub-
spaces of T~ ar on the weighted Bergman space A2 (D?) have been completely

described in [11]. For p = az* + Bw!, the minimal reducing subspaces of T}, on
A?*(D?) and the commutant algebra V*(p) = {T},, Ty} was described in [1, 15].

In this paper, we mainly consider the reducing subspaces for the Toeplitz
operator TZ{vEéu on the Bergman space A?(D?), where N and M are positive
integers.

2. Main results

In this section, we will give a complete characterization of the reducing
subspaces of T, nzr. To state our results, we need some notations and lemmas.
Through out this paper, denote 7' = T, nzu, where N and M are positive
integers. Denote by [f] the reducing subspace of T generated by f € A%(D?).
Let N be the set of all the nonnegative integers.
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By direct calculation, we know that

'n kRN l M . >
Th(zfzé) = Vi_nas 1 , 1 L2 hM ;
0, if I<hM
vE Lk—hN l+hM . >
T*h(z 2’2> = 7134»7 A1 ’ if k - hN
0, if k<hN

Ey={(k,]) eNxN:0<k<N,0<1< M},

By ={(k,1)eNxN:k> 2N},
Ey={(k,l) e NxN:1>2M,0<k < 2N},
Ez;={(k,))eNxN:N<k<2N,M<I[<2M},
Ey={(k,) eENxN:0<k<N,M<I<2M},
Es ={(k,) eENxN:0<I1<M,N<k<2N}.

Clearly,

5
A%(D?) = @span{zfzg :(p,q) € E;}.
i=0
Notice that My = span{z12J : (p,q) € Ep} is a reducing subspace of T'. To
ﬁnd other reducing subspaces, we first study the orthogonal decomposition of
22 with respect to M.

Lemma 2.1. Suppose M C Mg is a reducing subspace of T. Let Ppq be the
orthogonal projection from A?(D?) onto M.
() If (k,1) € By U Ey U E3, then Pyzfzh = \2b24 with some \ € C.
(i) If (k,1) € E4, then
Przh 2l € span{2723 : (n,m) € Ey}.
(iii) If (k,1) € Es, then
Przl 2l € span{2723 : (n,m) € Es}.

Proof. Let k,I € N. Since ML My, (Pp(2F2),2V24) = 0 for (p,q) € Eo.

In the following, we consider the inner product (Paq(22%),2729) for (p,q) €

5
U Ei.
i=1
For every nonnegative integer h satisfying [ > hM,
(1) Tt (sfah) = LIEAN ot
RSVl
By computation,

2.2

Y Vie+nN kI hxrh kL
) 2<PM(21Z2)aZfZg> = (PmT™T (zle),zfzg)
Vi—hm Vi
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= (Pm(e12), T T" (21 23))

7@7”*“& (Prm(2t24), 2V23), q> hM
Y4—nMVp
0, q < hM.

Recall that [s] = max{n € Z : n < s} for real number s. By above equality,
we get that if (Pu(2F25),2029) # 0, then

2,2
@) 712713+hN _ Y¢VptnN

Vwm Vi Vg-nmp
for 0 < h < [ﬁ]a q= [ﬁ]M

Equivalently,
3) (k+1)(qg+1) (k+1+hN)(g+1—hM)
(p+1)(I+1)  (p+1+hN)(I+1—-hM)
for0<h< [ﬁ],q [ﬁ]M

>

(i) If (k,1) € By U By U E3, we will show that the equality (2) holds if and
only if p=Fk and ¢ = I.

Case one: | > 2M. Let g1(A\) = (k+ 1) (¢+ 1)(p+ 1+ AN)(I+1 - AM),
g2(A) = p+ 1) + 1)(k + 1+ AN)(g + 1 — AM) and g(A) = g1(A) — g2(A).
Since | > 2M, we have ¢g(0) = g(1) = g(2) = 0. Considering g()) is a quadratic
polynomial, we have g(A\) = 0 on C. Therefore, g; and go have the same zeros,
ie.,

(k+1)(@+1)NM=(p+1)({+1)NM

(k+1)(q+ )% =+ )0+ DA

(k+1)(g+D5F =+ 1)+ 1) 57
It follows that p = k and ¢ = .

Case two: k > 2N. Replacing T*T by TT* in Case one, we can get the
desire result. The details are listed as follows.

Since

Thhe (k2L w 2 V0 < h < i
(2heh) = 25700000 )
we know that

2,2
Ve VivnMm
—— S (Pam(2125), 21 2) = (PMmT"T™ (21 24), 21 24)
Yi—nNi

= (Pr(2120), T T (2] 23))
st (b (hel), ) i p> hN
0 it p<hN.
Therefore, (Pp(2525), 27 23) # 0 will give that

2,2

(4) 713712+h]w _ TpVq+nMm
2 2~ 2

Ve—nNTi Vp—hz\ﬂ’g
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for 0 < h < [%] and p > [%]N Equivalently,

%) (k+1)(g+1) (k+1—hN)(g+1+hM)
(p+1)(I+1)  (p+1—-hN)(I+1+hM)

for 0 < h < [£] and p > [£]N. So when k > 2N, the above equality follows
for h =0,1,2. In this case we will get p = k and ¢ = [ by the same arguments
as the case [ > 2M has done.

Case three: (k,l) € E5 = {(n,m) EN?: N <n<2N,M<m< 2M}.
In this case, [£] > 1 and [{] > 1. Then equalities (3) and (5) hold for
h = 0,1. Recall that g(\) = g1(A\) — g2(\), where g1(\) = (k + 1)(q + 1)(p +
1+ AN)(I+1—=AM) and g2(A\) = (p+ 1)1+ 1)(k+1+AN)(g+1—AM). We
get g(0) = g(1) = g(—1) = 0. Therefore, we obtain that p = k and ¢ = I.

(ii) Suppose that (k,1) € E4. We need only prove that

Pu(at2y) L span{zizg" s (nom) € () £ |J Bs}-

If (n,m) € By U Ey U E3, the conclusion (i) implies that Paz]'2d* = A2'25"
for some A € C. Thus
(Pmetzg, 20 23") = (21 2y, Pual25) = Mzt2y, 21'25") = 0.
That is, Pyp2f2h L span{zfzd : (p,q) € By U By U E3}.
If (n,m) € B5s ={(k,]) e NxN:0<I<M,N<Ek<2N},
2
n_m 7 Vi
<Pszzé,zle ) = l2 Jg . (PpT™ T212272122 )
N Vie+N

rYlfM’Yk
= = (TPlezQ,Tzlz2 ) =0,

Y Vie+N

where the last equality comes from span{z{zJ : (p,q) € E5} C KerT. Thus
Ppzt2h | span{z¥24 : (p,q) € Fs}.
(iii) Replacing T*T by TT* in (ii), we get the desired result. O

Remark 2.1. Let M C Mg is a nonzero reducing subspace of T. In (i) of
Lemma 2.1, we indeed get that A\ = 0 or 1, that is 2§25 € M or 2§z, € M+
for each (k/’ l) € F1UFEyU FEs.

If 2¥2L € M, then

(6) [2820] = span{ZF "MV PhM e AN >0, 1+ hM >0, h e Z}

is a minimal reducing subspace of T', containing in M. Moreover, if 2f 25, 27 2] €

M and (k,1), (p,q) € E1 U E2 U Ej3, then it’s clear that either [zfzé]L[zfzg] or

[2F28] = [2V29]. So for any non-zero function f(z) = > ag2¥2h,
(k,l)€E1UE2uE3

[f] is the direct sum of some minimal reducing subspace as (6).

We define two equivalences on E4 and Fs respectively by:
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. k+1 —+1 k+1+N +1—-M
(i) for (p,q), (k,1) € Ba, (p,q) ~1 (k1) & i) — Bl

(i) for (p,q), (k,1) € Bs, (p,q) ~a (k1) & ) — Bl

It is easy to check that

(i) (p,q) € Es< (p+N,q— M) € Es;
(11) for (pv )ﬂ (kvl) € by, (pv ) ( ) ) (ijqu*M) ~2 (kjLNvl*M);
(ili) for (p,q), (k,1) € Es, (p,q) ~2 (k,1) & (p—N,q+M) ~1 (k—N,I+M).
For (n,m) € E4 and (k,l) € Es, let

Pom : A2(D?) — span{zy2d : (p,q) ~1 (n,m), (p,q) € Es},
Qi1 A2(D?) = span{z1'zy : (p,q) ~2 (K, 1), (p,q)) € Es}
be two orthogonal projections. For f € A%(D?) and P, ,,, f # 0, we have

(7) [Pn,mf] = Span{Pn,mfa TPn,mf}a

since T* Py f = 0, T?Pyy i f = 0 and T*TP, o f = jm”"f Py f. Similarly,
if feMand Qi,f # 0, then

(8) [Qr.if] = span{Qx 1 f, T*Qrf}

Lemma 2.2. Let M C Mg be a reducing subspace of T and (n,m) € Ej.
Then the following statements hold.

(a) If f € M, then [Pnﬁmf] Cc M and [QnJ’»Nﬂan\/[f] c M.

( ) ]f fl; f2 S Pn,mM and flLfQ, then [fl]L[fg]

(C) Pn,mT*f = T*Qn-l-N,m—]\/If and TPn,mf = Qn-{-N,m—]\/ITf; Vf € M

( ) If f € M} then [Pn,mf] = [Qn-i-N,m—MTf] and [Qn-‘,—N,m—Mf] =
[Po,m T f].

(€) PomM @ QuniNm—mM C M is a reducing subspace of T'.

Proof. (a) For every f € M, we know that PapPy, mf = Pomf, since PapPr.m
= P, m P, which obtained by the following simple facts:

(i) if (k,1) € E4, then PMz1 zb € span{2zd : (p,q) € B4}

(ii) if (k1) ¢ E4, then Prg2F2l Lspan{zt24 : (p,q) € E4}.
So P, f € M, which implies that [P, ., f] C M.

Similarly, we have PyQ@niNm-mf = Qni+nNm—mf, which shows that

QnJer Mf S M Thus [Qn+Nm Mf] C M
(b) Tt is clear that T'f1, T fo € span{z§z} : (k,1) € E5} and

(TR TE) = (T"Tf, o) = N oy
’Ynfym M

Equality (7) shows that
[f1] = span{f1, T f1}, [f2] = span{fa, T fo}.
So [f1]L[f]-
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(¢) For every (n,m) € Ey, let
Mn,m = span{zfzé : (ka l) ~1 (TL, m)a (kv l) S E4}a
MnJrN,Tan\/I = span{zfzé : (ka l) ~2 (TL + Nﬂ m — M)ﬂ (kv l) € E5}'
Then M, , and My, 4 N,m—nr are finite dimension, and the following statements
hold:
(1) TMn,m = MnJrN,me and T*MnJrN,me = Mn,m;
(ii) T(M#,m) C MTJ;‘,'N,me and T*(M#JrN,me) C M#,m'
Therefore, TPn,mf = Qn-i—N,m—MTf and Pn,mT*f = T*Qn-l-N,m—Mf for any
fem.
(d) By equality (7), conclusion (c¢) and

2 2
(9> T*TPn,mf = ;/Z-i_f]v%lpn,mfv

n im—M
we have
[QnanNm-—mT f] =span{QuniNm-mT f, T*Qn+Nm—mT f}
= span{T'P,, ;nf} ® span{T TP, ;. f}
= span{T P, [} ® span{ P, . f}

Similarly, [Qn+nN,m—nmf] = [PnmT*f] comes from equality (8), conclusion (c)
and

V22
(10) TT*Qn-i—n,m—]\/If = ,Y;Jrmen-l-N,m—]\Jf-

n Im—M

(e) By equalities (9), (10) and conclusion (c), we have
(11) Qn—i—N,m—MM = TT*(Qn—i—N,m—MM) = TPn,mT*Ma
Pn,mM = T*T(Pn,mM) = T*Qn—i-N,m—MTM-

Therefore, we only need to show that P, ,», M @& QniN,m—mM is an invariant
subspace of T and T™*. In fact,

T(Pn,mM @ Qn-i—N,m—MM) = TPn,mM = Qn-{-N,m—]\/IMa

where the last equality comes from TP, i, f = QnaNm—MT f € QniNm—mM
and QniNm-mf € TPy T*M C TP, ,, M for all f € M. Therefore,

T(PymM & QniNm—mM) C Py oM S QuiNm—mM.
Similarly, we can prove that
T*(PpmM ® QniNm—mM) = T*"QniNm—mM = Py M.
So we finish the proof. O



1656 M. ALBASEER, Y. LU, AND Y. SHI

Remark 2.2. In the prove of (e), we also get that
[Pn,mM} = Pn,mM @D QnJrN,meM = [QnJrN,meM];

where [P, M] and [Qn+N,m—rmM)] are the reducing subspaces generated by
PymM and Qpn4N,m—nM, respectively.

Theorem 2.1. Let M C Mg be a non-zero reducing subspace of T on the
bidisk. Then M = M1 @& My, where
(i) My is a direct sum of minimal reducing subspace [24 23] with 27z € M
for some (p,q) € E1 U Es U E3;
(il) Mg is a direct sum of minimal reducing subspace [f| with f € Py ;M
for some (n,m) € Ey.

Proof. Firstly, we prove that

(12) M=MP P PomMEPQuinm-uM),

(n,m)eE

where My = @ [22d] with A = {(p,q) € E1UE,UEs : 272 € M}, and E is
the partition é?qE)'i?)y the equivalence ~1. Set Hy, =P m M D QntN,m—m M.

On the one hand, M1 @ @ Hnm C M, since M; C M is a reducing
subspace of T, and conclusicgg?é)e}ian Lemma 2.2 implies that @ H,m C
M. On the other hand, for g = g1 + g2 € M with mer

(13) g1(2) = Z apq21 23, 92(2) = Z ap,q21 23-

(p,q)€E1UE2UE3 (p,q)EE;;UEs
Remark 2.1 shows that g € M; C M, which implies that g = g — g1 € M.
Therefore, go = Y. (Pom92 + QuiNm—mg2) € @D  Hpm. It follows
(n,m)eE (n,m)eE

that M is in the direct sum of M; and {H, .} with (n,m) € E. So we have
equality (12) holds.

Secondly, for each (n,m) € Ej, we prove that H, ., is the direct sum of
minimal reducing subspaces as [f] = span{f,Tf} with f € P, ,,, M. There are
some steps in the proof.

Step 1. Take 0 # f1 € P, mM. Then [fi] = span{f1,Tf1} C Hpm.
Step 2. If PmmM 7é Cf1, take 0 7é fo € anmM © Cfi. Then

[fQ] = Span{f27Tf2} - Hn,m S [fl]
Step 3. If P, ., M # span{fi, fo}, take 0 # f3 € P, ,, M & span{fi, fa}. Then
[f3] = Span{f3a Tf?)} - Hn,nb © [fl] S [fQ]

If P, ., M # span{fi, fo, f3}, continue this process. This process will stop in
finite steps, since the dimension of H,, ,, is finite. Thus, we finish the proof. [
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Remark 2.3. In particular, if M is a reducing subspace generated by g =
g1+ g2 € A%2(D?) as in (13), then [g] = [g1] @ [go] and

[92] - @ [Pn,mga Qn-i—N,m—Mg]a
(n,m)€E

where [Py,m¢, @nt+N,m—nmg] is the reducing subspace generated by P, g and
Qn+N,m—mg- By conclusions (a) and (d) in Lemma 2.2 and equalities in (11),
we get [Pn,mg7 QnJrN,mfl\/fg] = [Pn,mgy Pn,mT*g] = Span{Pn,mgv Pn,mT*g} S
Span{QnJrN,meg; QnJrN,meTg}'

Notice that span{ P, mg, PnmT*g} has an orthonormal basis {e1,...,ex},
since the dimension of span{P, g, P, mT*g} is finite. Conclusion (b) in
Lemma 2.2 shows that [e;]L[e;] for ¢ # j. Then we get

k k
[Pn,mgv Pn,mT*g] = @[ej] = Span{ej’ Tej}'
1

Jj=1 Jj=

Similarly, we can prove that

[92] = @ [Qn+N7meg7Qn+N,meTg]7

(n,m)eE
and
1 !
(@ Nm-119: QN m-Tg) = E@Ih;] = @) span{h;, T*h;},
j=1 j=1
where {hi,...,h;} is an orthonormal basis of

span{Qn+N,m-m9, Qu+Nm-nmTg}.

In the last part of this paper, we give some examples of the reducing sub-
spaces of T nzy for the case that N = M and N # M, respectively.

Example 2.1. Fix a,b,¢,d,e € C with e # 0. Let

9,14 7,15 5,17 419 1112
f(z1,22) = aziz” + bz{25° + 2725 + dz1z5° +ezy 257,

and [f] be the reducing subspace of T,10z10 generated by f. Then

[f] = span{fi, fo} @ span{z%lHthQlQ*th ch=-1,0,1},

where

9_14 715 5_17 419
f1(z1,22) = az{z5" + bz{z3° + 225" +dz125°,

BN EPRIETESLE S SPRIN)
Proof. Notice that (11,12) € E5 and (9,14) € E4. A direct computation shows
that (9,14) ~1 (7,15) ~1 (5,17) ~1 (4,19). Remark 2.1 implies that f; =
Pyiof and 211212 are in M. As in Remark 2.3, there is span{ Py 19 f, Py 10T* f}
= [f1] = span{fi1, fo}. Therefore we get the desired result. O
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Example 2.2. Let f(z1,22) = 2f2a% + 2723 + 2321° and [f] be the reducing
subspace of T’5z10 generated by f- Then

414 | 315 1,94 385 7T 217
[f] = span{2125" + 27257, 32123 + 52122} @ span{z 25,2125 }-

Proof. Notice that (7,7) € E5, (4,14),(3,15) € E4 and (4,14) ~1 (3,15). Let
fi = Puiaf = 2{z* +2023° and fo = Q77 f = 2{25. Then [Py1af, Po1aT* f] =
[f1] = span{zi23* + 23237, 22025 + 228238Y, [Pean f, Poan T f] = Q7o f. Q7T f]
= [fo] = span{z72z7, 27247}, Then we finish the proof. O
Example 2.3. Let f(z1,22) = 2325 + 2723, and [f] be the reducing subspace
of T,azs generated by f. Then

[f] = span{z{23, 2{23}.

Proof. Notice that (3,8) € Ey, (7,3) € Es. It is easy to check that T,izz2725 =

32{23 and T;‘%Engzg’ = 12328, So [2§28] = [2]25] = span{z}28, 2]23}. It means
that [f] = span{z{28, 2] 23}. O

Example 2.4. Let f(21,22) = 22287 + 21234 + 2925 + 23215 + 2823 and [f] be
the reducing subspace of T sz10 generated by f. Then

[f] = [z822"] @ [2125"] @ [2722°]

= 01 @ ol + ] ol S
= [e23] @ [e123 + 2125 © [, — 3L2125)-
Proof. Notice that (2,17), (4,14),(3,15) € Ey4, (9,4),(8,5) € E5 and
(4,14) ~1 (3,15), (9,4) ~2 (8,5).
(i) Since Py14T*f = T*(2025 + 2823) = 32123* + §2323°, we have
span{ Py 14f, Ps1aT* f} = span{zfza?, 23235},
Therefore,
[f] = [z82"] @ [125"] @ [2122°]
= span{ziza”, 2723} @ span{zizs?, 2025} @ span{z3 237, 2525},
(ii) It is easy to check that (zf23* — 8228215 2120% + 2§21%) = 0 and
span{ Py 1af, P114T" f} = span{zilz%‘l + zi’zéf’, zfz%‘l — %zi’zéf’
So [f] = [z123" + 2{23°] @ [2123" — F52025°] @ [21237).
(iii) Notice that
span{Qo 4 f, Qo 4T f} = Span{z?,z;l + z?zg’, %z?zg + %z?zg’}
= span{2yzy + 2323, 2125 — 22323},
where 2723 — 2228251 Qg 4f. Then

] = [e{2d] @ [2022 + 2123) @ [217; — 3E2123]. O
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Remark 2.4. In Example 2.4, since T*(2723 + 2§23) = 12123% 4+ §2921° and
T* (2025 — gngzzg) = 12123" — $223235, conclusion (d) in Lemma 2.2 implies
that [f] = [27237] & [32123" + §2123°] @ [521 23" — B2f2d’).

Moreover, let T = T.sz10 and g = 2323t + 2928 + 23215 then [g] = [g +
az$z3] = [2123") @ [23235] for a # 3. In fact, span{Py14(g+azfz3), Py1aT*(g+

4,14 4,14 1
az$23)} = span{zjz3t, 2323%}, since T* (2025 + az§23) and 2{23* + z?z25 are

linearly independent.

For the case that a = 2, we have

4.14 , 315 5
:span{z122 + 2323, 2 + 2122}

_ [ededt g 20
since T*(g + zl $28) = 1Py 14g.
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