DOI QR코드

DOI QR Code

배열회수 보일러 전열관군에서 열전달 모델링에 따른 온도 분포 특성 연구

A study on the temperature distribution characteristics in the tube modules of a heat recovery steam generator ith the change of heat transfer modeling

  • 하지수 (계명대학교 기계자동차공학과)
  • Ha, Ji Soo (Department of Mechanical and Automotive Engineering, Keimyung University)
  • 투고 : 2015.02.23
  • 심사 : 2015.04.08
  • 발행 : 2015.06.30

초록

배열회수 보일러는 입구 확관 덕트와 전열관군으로 이루어져 있는데 전열관군에서 열전달 효율을 향상하기 위해서는 전열관군 전에서 배기가스 유동이 균일하게 되어야 한다. 본 연구에서는 전열관군 전의 배열회수 보일러 입구 덕트에서 유동 특성을 살펴보았고 전열관군의 열전달 메커니즘을 지금까지 다른 연구들에서 적용하였던 일정한 열전달 량으로 한 경우와 전열관군 배관의 내부와 외부의 대류열전달을 고려한 열전달 메커니즘을 적용한 경우의 해석에서 온도 분포를 비교하여 배열회수 보일러의 전열관군에서 실제 현상에 보다 적합한 열전달 메커니즘을 정립하는 것을 목적으로 하였다. 본 연구를 통하여 전열관군 배관의 내부와 외부의 대류열전달을 고려한 열전달 메커니즘을 적용한 해석이 일정한 열전달 량을 적용한 경우보다 온도 분포가 타당한 결과를 도출하였고 이렇게 적용한 경우는 배열회수 보일러 탈질설비 전단에서 온도 분포가 설계 기준 ${\pm}10^{\circ}C$에 만족함을 알 수 있었다.

A heat recovery steam generator consists of inlet expansion duct and heat transfer tube bank modules. For the enhancement of heat transfer in the tube bank modules, the flow should be uniform before the 1st heat transfer tube bank module. The present study has been carried out to analyze the flow characteristics in the inlet expansion duct of a heat recovery steam generator by using numerical flow analysis. The aim of the present study is to establish the proper heat transfer mechanism in the heat transfer tube bank modules by the comparison of the heat transfer models, the case with the constant heat loss per unit volume and the case with heat loss by using inner and outer convective heat transfer coefficient of heat transfer tube. From the present research, it could be seen that the heat transfer mechanism with using inner and outer convective heat transfer coefficient derives more proper temperature distribution results and the acceptance criteria of the temperature distribution within ${\pm}10^{\circ}C$ before SCR is satisfied with using this heat transfer mechanism.

키워드

참고문헌

  1. Jae Dong Park, Il Wong Park, Kyong Chun Kim, "Heat Transfer and Draft Loss In HRSG Tube Banks", Proceedings of the SAREK Summer Annual Confenrence, 2000, p. 141-146
  2. Chae_hon Chong, Jung-il Song, "Stress Behaviors of Superheater Tubes under Load Change Operation in HRSG", Journal of the Korean Solar Energy Society, 2008, Vol. 28, No. 6, p. 33-39
  3. Chae_hon Chong, Jung-il Song, "Effect on Thermal Performance of Superheater Module under Part Load Operation in HRSG", Journal of Energy Engineering, 2008, Vol. 17, No. 3, p. 161-166
  4. H.K. Choi, G.K. Yoo, B.J. Shin and C.H. Kim, "NUMERICAL STUDY ON FLOW CHARACTERISTIC IN THE HEAT RECOVERY STEAM GENERATOR", 2010, Vol. 15, No.1, p. 17-23
  5. Tae Kwon Kim, Boo Yoon Lee, Ji Soo Ha, "A Numerical Analysis of Flow Characteristics in a Heat Recovery Steam Generator with the Change of Inlet Flow Conditions", Journal of the Korean Institute of Gas, 2011, Vol. 15, No.3, p. 53-57 https://doi.org/10.7842/kigas.2011.15.3.053
  6. Ji Soo Ha, "Characteristics of Flow Uniformity at the Section before Tube Bank with the Change of Expansion Inlet Duct Shape in a Heat Recovery Steam Generator", 2012, Journal of the Korean Institute of Gas, 2011, Vol. 16, No.1, p. 1-7 https://doi.org/10.7842/kigas.2012.16.1.1
  7. ESCOA, "Fin Tube Manual", ESCOA Corp., 1978
  8. Marie-Noelle Dumont, Georges Heyen, "Mathematical modelling and design of an advanced oncethrough heat recovdery steam generator", Computer and Chemical Engineering, Vol. 28, 2004, p. 651-660 https://doi.org/10.1016/j.compchemeng.2004.02.034
  9. S.V. Patankar, Numerical Heat Transfer and Fluid Flow, 1980, 126-131