DOI QR코드

DOI QR Code

Effects of White Sesame Seed Extract and β-Sitosterol on Growth, Migration, and Adhesion of H1299 Human Lung Cancer Cells

흰깨 추출물과 β-Sitosterol이 H1299 폐암세포의 성장, 이동, 부착에 미치는 효과

  • Lee, Jungjae (Department of Food and Nutrition, Chungbuk National University) ;
  • Kim, Seoyun (Department of Food and Nutrition, Chungbuk National University) ;
  • Ju, Jihyeung (Department of Food and Nutrition, Chungbuk National University)
  • 이중재 (충북대학교 식품영양학과) ;
  • 김서윤 (충북대학교 식품영양학과) ;
  • 주지형 (충북대학교 식품영양학과)
  • Received : 2015.06.15
  • Accepted : 2015.07.24
  • Published : 2015.09.30

Abstract

The current study aimed to investigate effects of ethanol extract of white sesame seed (WSE) as well as a major constituent of white sesame seed, ${\beta}-sitosterol$, on the growth, migration, and adhesion of H1299 human lung cancer cells. Treatment with WSE at concentrations of 150, 300, and $600{\mu}g/mL$ dose-dependently inhibited cell growth (to 51.5~82.6% of control). Treatment with ${\beta}-sitosterol$ at concentrations of 3.125, 6.25, 12.5, and $25{\mu}M$ inhibited cell growth to a greater extent (to 27.5~49.0% of control) than that with WSE (P<0.05). Treatment with WSE (at concentration of $600{\mu}g/mL$) or ${\beta}-sitosterol$ (at concentration of $25{\mu}M$) resulted in increased sub-G1 cell population, indicating their apoptosis-inducing activities. ${\beta}-sitosterol$ was effective in inhibiting both cell migration (to 80.8~86.2% of control at a concentration range of $3.125{\sim}25{\mu}M$) and adhesion (to 21.5~37.4% of control at a concentration range of $6.25{\sim}25{\mu}M$), whereas WSE at a concentration range of $150{\sim}600{\mu}g/mL$ was ineffective. These results indicate that ${\beta}-sitosterol$ is more active than WSE in inhibiting growth, migration, and adhesion of H1299 human lung cancer cells. Further studies are needed to determine if similar effects are reproduced in vivo.

본 연구에서는 흰깨의 에탄올 추출물이 폐암세포의 성장, 이동, 부착 등에 미치는 영향을 인체유래 폐암 세포주인 H1299 세포를 이용하여 in vitro 수준에서 조사하고, 이러한 흰깨 추출물의 효과를 흰깨의 주요 활성 성분 중 하나인 ${\beta}-sitosterol$의 효과와 비교하고자 하였다. 흰깨 추출물 ($150{\sim}600{\mu}g/mL$)과 ${\beta}-sitosterol$ ($3.125{\sim}25{\mu}M$)은 H1299 세포의 성장을 각각 대조구 대비 51.5~82.6%와 27.5~49.0%로 억제하는 농도 의존적 활성을 나타내었고, 이러한 흰깨 추출물과 ${\beta}-sitosterol$의 세포 성장 억제 활성은 부분적으로 apoptosis 유도 활성에서 기인되는 것으로 생각된다. 흰깨 추출물($150{\sim}600{\mu}g/mL$)은 H1299 세포의 이동과 부착을 억제하는 활성을 나타내지 않은 반면에 ${\beta}-sitosterol$$3.125{\sim}25{\mu}M$ 농도에서 세포 이동을 대조구 대비 80.8~86.2%로, $6.25{\sim}25{\mu}M$ 농도에서 세포 부착을 대조구 대비 21.5~37.4%로 각각 억제하는 활성을 나타내었다. 이상의 연구 결과를 종합하여 볼 때 H1299 폐암세포의 성장, 이동, 부착 등을 억제하는 데에는 흰깨의 추출물보다는 단일성분인 ${\beta}-sitosterol$이 더 효과적인 것으로 생각된다. 앞으로 이와 같은 연구 결과가 in vivo 수준에서 재현되는지 여부를 검증하고 관련 기전을 탐색하는 것이 필요할 것으로 생각된다.

Keywords

References

  1. Lee CB. 2003. Coloured flora of Korea. 1st ed. Hyang Mun Sa, Seoul, Korea. p 140.
  2. Kim TJ. 1996. Korean resources plants IV. Seoul National University Publisher, Seoul, Korea. p 60.
  3. National Academy of Agricultural Science. 2011. Food Composition Table. 8th ed. Rural Development Administration, Suwon, Korea. p 108.
  4. Ministry of Health & Welfare. 2014. Korea Health Statistics 2013. Korea National Health and Nutrition Examination Survey (KNHANES) VI-1. Ministry of Health & Welfare, Sejong, Korea. p 475-489.
  5. Lee SU, Kang CW, Kang DH, Yasumoto S, Kasuta M. 1999. Varietal variation of sesamin, sesamolin, and oil contents according to seed-coat colors in sesame. Korean J Breed 31: 286-292.
  6. Lee J, Lee SR. 1994. Analysis of phenolic substances content in Korean plant foods. Korean J Food Sci Technol 26: 310-316.
  7. Park JL, Chae KY, Hong JS. 2007. A comparison of antioxidant activities in black sesame seeds according to preparation and cooking conditions. J East Asian Soc Dietary Life 17: 520-531.
  8. Ahn CY, Hyun KH, Park KH. 1992. Investigation of antioxidative substances in black sesame seed. Korean J Food Sci Technol 24: 31-36.
  9. Hu Q, Xu J, Chen S, Yang F. 2004. Antioxidant activity of extracts of black sesame seed (Sesamum indicum L.) by supercritical carbon dioxide extraction. J Agric Food Chem 52: 943-947. https://doi.org/10.1021/jf034485x
  10. Kim MJ, Jeong MK, Chang PS, Lee JH. 2009. Radical scavenging activity and apoptotic effects in HT-29 human colon cancer cells of black sesame seed extract. Int J Food Sci Technol 44: 2106-2112. https://doi.org/10.1111/j.1365-2621.2009.02044.x
  11. Visavadiya NP, Soni B, Dalwadi N. 2009. Free radical scavenging and antiatherogenic activities of Sesamum indicum seed extracts in chemical and biological model systems. Food Chem Toxicol 47: 2507-2515. https://doi.org/10.1016/j.fct.2009.07.009
  12. Wichitsranoi J, Weerapreeyakul N, Boonsiri P, Settasatian C, Settasatian N, Komanasin N, Sirijaichingkul S, Teerajetgul Y, Rangkadilok N, Leelayuwat N. 2011. Antihypertensive and antioxidant effects of dietary black sesame meal in prehypertensive humans. Nutr J 10: 82. https://doi.org/10.1186/1475-2891-10-82
  13. Alipoor B, Haghighian MK, Sadat BE, Asghari M. 2012. Effect of sesame seed on lipid profile and redox status in hyperlipidemic patients. Int J Food Sci Nutr 63: 674-678. https://doi.org/10.3109/09637486.2011.652077
  14. Woyengo TA, Ramprasath VR, Jones PJ. 2009. Anticancer effects of phytosterols. Eur J Clin Nutr 63: 813-820. https://doi.org/10.1038/ejcn.2009.29
  15. Marangoni F, Poli A. 2010. Phytosterols and cardiovascular health. Pharmacol Res 61: 193-199. https://doi.org/10.1016/j.phrs.2010.01.001
  16. Liz R, Zanatta L, dos Reis GO, Horst H, Pizzolatti MG, Silva FR, Frode TS. 2013. Acute effect of ${\beta}$-sitosterol on calcium uptake mediates anti-inflammatory effect in murine activated neutrophils. J Pharm Pharmacol 65: 115-122. https://doi.org/10.1111/j.2042-7158.2012.01568.x
  17. Loizou S, Lekakis I, Chrousos GP, Moutsatsou P. 2010. ${\beta}$-Sitosterol exhibits anti-inflammatory activity in human aortic endothelial cells. Mol Nutr Food Res 54: 551-558. https://doi.org/10.1002/mnfr.200900012
  18. Nirmal SA, Pal SC, Mandal SC, Patil AN. 2012. Analgesic and anti-inflammatory activity of ${\beta}$-sitosterol isolated from Nyctanthes arbortristis leaves. Inflammopharmacology 20: 219-224. https://doi.org/10.1007/s10787-011-0110-8
  19. Donald PR, Lamprecht JH, Freestone M, Albrecht CF, Bouic PJ, Kotze D, van Jaarsveld PP. 1997. A randomised placebo-controlled trial of the efficacy of beta-sitosterol and its glucoside as adjuvants in the treatment of pulmonary tuberculosis. Int J Tuberc Lung Dis 1: 518-522.
  20. Awad AB, Chen YC, Fink CS, Hennessey T. 1996. ${\beta}$- Sitosterol inhibits HT-29 human colon cancer cell growth and alters membrane lipids. Anticancer Res 16: 2797-2804.
  21. Choi YH, Kim YA, Park C, Choi BT, Lee WH, Hwang KM, Jung KO, Park KY. 2004. ${\beta}$-Sitosterol induced growth inhibition is associated with up-regulation of Cdk inhibitor p21WAF1/CIP1 in human colon cancer cells. J Korean Soc Food Sci Nutr 33: 1-6. https://doi.org/10.3746/jkfn.2004.33.1.001
  22. Zhao Y, Chang SK, Qu G, Li T, Cui H. 2009. ${\beta}$-Sitosterol inhibits cell growth and induces apoptosis in SGC-7901 human stomach cancer cells. J Agric Food Chem 57: 5211- 5218. https://doi.org/10.1021/jf803878n
  23. Jourdain C, Tenca G, Deguercy A, Troplin P, Poelman D. 2006. In-vitro effects of polyphenols from cocoa and ${\beta}$-sitosterol on the growth of human prostate cancer and normal cells. Eur J Cancer Prev 15: 353-361. https://doi.org/10.1097/00008469-200608000-00009
  24. von Holtz RL, Fink CS, Awad AB. 1998. ${\beta}$-Sitosterol activates the sphingomyelin cycle and induces apoptosis in LNCaP human prostate cancer cells. Nutr Cancer 32: 8-12. https://doi.org/10.1080/01635589809514709
  25. Ju YH, Clausen LM, Allred KF, Almada AL, Helferich WG. 2004. ${\beta}$-Sitosterol, ${\beta}$-sitosterol glucoside, and a mixture of ${\beta}$-sitosterol and ${\beta}$-sitosterol glucoside modulate the growth of estrogen-responsive breast cancer cells in vitro and in ovariectomized athymic mice. J Nutr 134: 1145-1151.
  26. Sook SH, Lee HJ, Kim JH, Sohn EJ, Jung JH, Kim B, Kim JH, Jeong SJ, Kim SH. 2014. Reactive oxygen speciesmediated activation of AMP-activated protein kinase and c-Jun N-terminal kinase plays a critical role in beta-sitosterol- induced apoptosis in multiple myeloma U266 cells. Phytother Res 28: 387-394. https://doi.org/10.1002/ptr.4999
  27. Awad AB, Downie A, Fink CS, Kim U. 2000. Dietary phytosterol inhibits the growth and metastasis of MDA-MB-231 human breast cancer cells grown in SCID mice. Anticancer Res 20: 821-824.
  28. Awad AB, Fink CS, Williams H, Kim U. 2001. In vitro and in vivo (SCID mice) effects of phytosterols on the growth and dissemination of human prostate cancer PC-3 cells. Eur J Cancer Prev 10: 507-513. https://doi.org/10.1097/00008469-200112000-00005
  29. Baskar AA, Ignacimuthu S, Paulraj GM, Al Numair KS. 2010. Chemopreventive potential of ${\beta}$-sitosterol in experimental colon cancer model-an in vitro and in vivo study. BMC Complement Altern Med 10: 24. https://doi.org/10.1186/1472-6882-10-24
  30. Mendilaharsu M, De Stefani E, Deneo-Pellegrini H, Carzoglio J, Ronco A. 1998. Phytosterols and risk of lung cancer: a case-control study in Uruguay. Lung Cancer 21: 37-45. https://doi.org/10.1016/S0169-5002(98)00044-0
  31. Weinberg RA. 2007. The biology of cancer. Garland Science, New York, NY, USA. p 588-597.
  32. World Health Organization. 2012. World Health Statistics 2012. World Health Organization, Geneva, Switzerland. p 80-81.
  33. Statistics Korea. 2012. 2011 Cause of Death Statistics. Daejeon, Korea. p 9-10.
  34. Amin AR, Kucuk O, Khuri FR, Shin DM. 2009. Perspectives for cancer prevention with natural compounds. J Clin Oncol 27: 2712-2725. https://doi.org/10.1200/JCO.2008.20.6235
  35. Bode AM, Dong Z. 2009. Cancer prevention research-then and now. Nat Rev Cancer 9: 508-516. https://doi.org/10.1038/nrc2646
  36. McCullough ML, Giovannucci EL. 2004. Diet and cancer prevention. Oncogene 23: 6349-6364. https://doi.org/10.1038/sj.onc.1207716
  37. Lambert JD, Lu G, Lee MJ, Hu J, Ju J, Yang CS. 2009. Inhibition of lung cancer growth in mice by dietary mixed tocopherols. Mol Nutr Food Res 53: 1030-1035. https://doi.org/10.1002/mnfr.200800438
  38. Irons R, Tsuji PA, Carlson BA, Ouyang P, Yoo MH, Xu XM, Hatfield DL, Gladyshev VN, Davis CD. 2010. Deficiency in the 15-kDa selenoprotein inhibits tumorigenicity and metastasis of colon cancer cells. Cancer Prev Res 3:630-963. https://doi.org/10.1158/1940-6207.CAPR-10-0003
  39. Toton E, Ignatowicz E, Bernard MK, Kujawski J, Rybczynska M. 2013. Evaluation of apoptotic activity of new condensed pyrazole derivatives. J Physiol Pharmacol 64: 115-123.
  40. Han SX, Zhu Q, Ma JL, Zhao J, Huang C, Jia X, Zhang D. 2010. Lowered HGK expression inhibits cell invasion and adhesion in hepatocellular carcinoma cell line HepG2. World J Gastroenterol 16: 4541-4548. https://doi.org/10.3748/wjg.v16.i36.4541
  41. Matsuura N, Miyamae Y, Yamane K, Nagao Y, Hamada Y, Kawaguchi N, Katsuki T, Hirata K, Sumi S, Ishikawa H. 2006. Aged garlic extract inhibits angiogenesis and proliferation of colorectal carcinoma cells. J Nutr 136: 842S-846S.
  42. Hanahan D, Weinberg RA. 2011. Hallmarks of cancer: the next generation. Cell 144: 646-674. https://doi.org/10.1016/j.cell.2011.02.013
  43. Hsu HF, Huang KH, Lu KJ, Chiou SJ, Yen JH, Chang CC, Houng JY. 2011. Typhonium blumei extract inhibits proliferation of human lung adenocarcinoma A549 cells via induction of cell cycle arrest and apoptosis. J Ethnopharmacol 135: 492-500. https://doi.org/10.1016/j.jep.2011.03.048
  44. Lu B, Zhang Y, Wu X, Shi J. 2007. Separation and determination of diversiform phytosterols in food materials using supercritical carbon dioxide extraction and ultraperformance liquid chromatography-atmospheric pressure chemical ionization- mass spectrometry. Anal Chim Acta 588: 50-63. https://doi.org/10.1016/j.aca.2007.01.067
  45. Kleinsmith LJ. 2008. Principles of cancer biology. 1st ed. Life Science Publishing Co., Seoul, Korea. p 16-63.
  46. Awad AB, Williams H, Fink CS. 2001. Phytosterols reduce in vitro metastatic ability of MDA-MB-231 human breast cancer cells. Nutr Cancer 40: 157-164. https://doi.org/10.1207/S15327914NC402_12

Cited by

  1. Uncovering the Anti-Lung-Cancer Mechanisms of the Herbal Drug FDY2004 by Network Pharmacology vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/6644018