DOI QR코드

DOI QR Code

Corrosion of Titanium Alloys in High Temperature Seawater

  • Pang, J.J. (Department of Materials Science & Engineering, National University of Singapore) ;
  • Blackwood, D.J. (Department of Materials Science & Engineering, National University of Singapore)
  • 투고 : 2015.07.23
  • 심사 : 2015.08.28
  • 발행 : 2015.08.31

초록

Materials of choice for offshore structures and the marine industry have been increasingly favoring materials that offer high strength-to-weight ratios. One of the most promising families of light-weight materials is titanium alloys, but these do have two potential Achilles' heels: (i) the passive film may not form or may be unstable in low oxygen environments, leading to rapid corrosion; and (ii) titanium is a strong hydride former, making it vulnerable to hydrogen embrittlement (cracking) at high temperatures in low oxygen environments. Unfortunately, such environments exist at deep sea well-heads; temperatures can exceed $120^{\circ}C$, and oxygen levels can drop below 1 ppm. The present study demonstrates the results of investigations into the corrosion behavior of a range of titanium alloys, including newly developed alloys containing rare earth additions for refined microstructure and added strength, in artificial seawater over the temperature range of $25^{\circ}C$ to $200^{\circ}C$. Tests include potentiodynamic polarization, crevice corrosion, and U-bend stress corrosion cracking.

키워드

참고문헌

  1. D. J. Blackwood, R. Greef and L. M. Peter, Electrochim. Acta, 34, 875 (1989). https://doi.org/10.1016/0013-4686(89)87123-3
  2. D. J. Blackwood, L. M. Peter and D. E. Williams, Electrochim. Acta, 33, 1143 (1988). https://doi.org/10.1016/0013-4686(88)80206-8
  3. D. J. Blackwood, L. M. Peter, H. E. Bishop, P. R. Chalker and D. E. Williams, Electrocim. Acta, 34, 1401 (1989). https://doi.org/10.1016/0013-4686(89)87178-6
  4. L. M. Young, G. A. Young, J. R. Scully and R. P. Gangloff, Metall. Mater. Trans. A, 26, 1257 (1995). https://doi.org/10.1007/BF02670620
  5. A. M. Alvarez, I. M. Robertson and H. K. Birnbaum, Acta Mater., 52, 4161 (2004). https://doi.org/10.1016/j.actamat.2004.05.030
  6. D. G. Kolman and J. R. Scully, Corros. Sci., 42, 1863 (2000). https://doi.org/10.1016/S0010-938X(00)00033-0
  7. N. Rajendran and T. Nishimura, Mater. Corros., 58, 334 (2007). https://doi.org/10.1002/maco.200604022
  8. D. J. Blackwood, Electrochim. Acta, 46, 563 (2000). https://doi.org/10.1016/S0013-4686(00)00636-8
  9. D. W. Shoesmith and J. J. Noel, Shreir's Corrosion, 4th ed., p. 2042, (Ed.s.) H. Stott, S. Lyon, A. Richardson, R. Lindsay, M. Graham, R. A. Cottis and D. Scantlebury, Elsevier Science, London (2009).
  10. Y. Li, Private communication, National University of Singapore, Singapore (2014).
  11. J. S. Lee, M. L. Reed and R. G. Kelly, J. Electrochem. Soc., 151, B423 (2004). https://doi.org/10.1149/1.1753581
  12. M. I. Abdulsalam, Corros. Sci., 47, 1336 (2005). https://doi.org/10.1016/j.corsci.2004.08.001
  13. B. P. Cai, Y. H. Liu, X. J. Tian, F. Wang, H. Li and R. J. Ji, Corros. Sci., 52, 3235 (2010). https://doi.org/10.1016/j.corsci.2010.05.040
  14. B. Balakrisnan, M. Eng. Thesis, Natioanl University of Singapore (1998).