References
- Aihara T, Oda, T (2013). Cooperative and non-cooperative conformational changes of F-actin induced by cofilin. Biochem Biophys Res Commun, 435, 229-33. https://doi.org/10.1016/j.bbrc.2013.04.076
- Ambrosio EP, Rosa FE, Domingues MA, et al (2011) Cortactin is associated with perineural invasion in the deep invasive front area of laryngeal carcinomas. Hum Pathol, 42, 1221-9. https://doi.org/10.1016/j.humpath.2010.05.030
- Ammer AG, Weed SA (2008). Cortactin branches out: roles in regulating protrusive actin dynamics. Cell Motil Cytoskeleton, 65, 687-707. https://doi.org/10.1002/cm.20296
- Artym VV, Zhang Y, Seillier-Moiseiwitsch F, Yamada KM, Mueller SC (2006). Dynamic interactions of cortactin and membrane type 1 matrix metalloproteinase at invadopodia: defining the stages of invadopodia formation and function. Cancer Res, 66, 3034-43. https://doi.org/10.1158/0008-5472.CAN-05-2177
- Ayala I, Baldassarre M, Giacchetti G, et al (2008). Multiple regulatory inputs converge on cortactin to control invadopodia biogenesis and extracellular matrix degradation. J Cell Sci, 121, 369-78. https://doi.org/10.1242/jcs.008037
- Baldwin GS, Lio DS-S, Ferrand A, et al (2014). Activation of Src family tyrosine kinases by ferric ions. Biochim Biophys Acta, 1844, 487-96. https://doi.org/10.1016/j.bbapap.2013.12.004
- Bryce NS, Clark ES, Leysath JML, et al (2005). Cortactin promotes cell motility by enhancing lamellipodial persistence. Curr Biol, 15, 1276-85. https://doi.org/10.1016/j.cub.2005.06.043
- Buccione R, Caldieri G, Avala I (2009). Invadopodia: specialized tumor cells structures for the focal degradation of the extracellular matrix. Cancer Metastasis Rev, 28, 137-49. https://doi.org/10.1007/s10555-008-9176-1
- Buccione R, Orth JD, McNiven, MA (2004). Foot and mouth: podosomes, invadopodia and circular dorsal ruffles. Nat Rev Mol Cell Biol, 5, 647-57. https://doi.org/10.1038/nrm1436
- Buday L, Downward J (2007). Roles of cortactin in tumor pathogenesis. Biochim Biophys Acta, 1775, 263-73.
- Condeelis J, Segall, JE (2003). Intravital imaging of cell movement in tumours. Nat Rev Cancer, 3, 921-30. https://doi.org/10.1038/nrc1231
- David-Pfeuty T, Singer SJ (1980). Altered distributions of the cytoskeletal proteins vinculin and alpha-actinin in cultured fibroblasts transformed by Rous sarcoma virus. Proc Natl Acad Sci USA, 77, 6687-91. https://doi.org/10.1073/pnas.77.11.6687
- de Vicente JC, Rosado P, Lequerica-Fernandez P, et al (2013). Focal adhesion kinase overexpression: correlation with lymph node metastasis and shorter survival in oral squamous cell carcinoma. Head Neck, 35, 826-30. https://doi.org/10.1002/hed.23038
- Destaing O, Block MR, Planus E, Albiges-Rizo C (2011). Invadosome regulation by adhesion signaling. Curr Opin Cell Biol, 23, 597-606. https://doi.org/10.1016/j.ceb.2011.04.002
- Eckert MA, Yang J (2011). Targeting invadopodia to block breast cancer metastasis. Oncotarget, 2, 562-8 https://doi.org/10.18632/oncotarget.301
- Elsberger B (2014). Translational evidence on the role of Src kinase and activated Src kinase in invasive breast cancer. Crit Rev Oncol Hematol, 89, 343-51. https://doi.org/10.1016/j.critrevonc.2013.12.009
- Gagat M, Grzanka D, Izdebska M, et al (2014). Tropomyosin-1 protects endothelial cell-cell junctions against cigarette smoke extract through F-actin stabilization in EA.hy926 cell line. Acta Histochem, 116, 606-18. https://doi.org/10.1016/j.acthis.2013.11.013
- Garcia E, Jonesb GE, Macheskyc LM, Antona IM (2012). WIP: WASP-interacting proteins at invadopodia and podosomes. Eur J Cell Biol, 9, 869-77.
- Genot E, Gligorijevic B (2014). Invadosomes in their natural habitat. Eur J Cell Biol, 93, 367-79. https://doi.org/10.1016/j.ejcb.2014.10.002
- Greer RO Jr, Said S, Shroyer KR, Marileila VG, Weed SA (2007). Overexpression of cyclin D1 and cortactin is primarily independent of gene amplification in salivary gland adenoid cystic carcinoma. Oral Oncol, 43, 735-41. https://doi.org/10.1016/j.oraloncology.2006.09.007
- Grigera PR, Ma L, Borgman CA, et al (2012). Mass spectrometric analysis identifies a cortactin-RCC2/TD60 interaction in mitotic cells. J Proteomics, 75, 2153-9. https://doi.org/10.1016/j.jprot.2012.01.012
- Hauck CR, Hsia DA, Ilic D, Schlaepfer DD (2002) v-Src SH3-enhanced interaction with focal adhesion kinase at beta 1 integrin-containing invadopodia promotes cell invasion. J Biol Chem, 277, 12487-90. https://doi.org/10.1074/jbc.C100760200
- Hong BH, Wu CH, Yeh CT, Yen GC (2013). Invadopodia-associated proteins blockade as a novel mechanism for 6-shogaol and pterostilbene to reduce breast cancer cell motility and invasion. Mol Nutr Food Res, 57, 886-95. https://doi.org/10.1002/mnfr.201200715
- Hwang YS, Park KK, Chung WY (2012). Invadopodia formation in oral squamous cell carcinoma: the role of epidermal growth factor receptor signalling. Arch Oral Biol, 57, 335-43 https://doi.org/10.1016/j.archoralbio.2011.08.019
- Isaac BM, Ishihara D, Nusblat LM, et al (2010). N-WASP has the ability to compensate for the loss of WASP in macrophage podosome formation and chemotaxis. Exp Cell Res, 316, 3406-16. https://doi.org/10.1016/j.yexcr.2010.06.011
- Jimenez L, Sharma, VP, Lim J, et al (2014). MicroRNA-375 impairs head and neck squamous cell carcinoma invasion by suppressing invadopodia activity. Cancer Res, 74, 1452. https://doi.org/10.1158/0008-5472.CAN-13-2171
- Linder S (2007). The matrix corroded: podosomes and invadopodia in extracellular matrix degradation. Trends Cell Biol, 17, 107-17. https://doi.org/10.1016/j.tcb.2007.01.002
- Murphy DA, Courtneidge SA (2011). The 'ins' and 'outs' of podosomes and invadopodia: characteristics, formation and function. Nat Rev Mol Cell Biol, 12, 413-26. https://doi.org/10.1038/nrm3141
- Nascimento CF, Gama-De-Souza LN, Freitas VM, Jaeger RG (2010). Role of MMP9 on invadopodia formation in cells from adenoid cystic carcinoma. Study by laser scanning confocal microscopy. Microsc Res Tech, 273, 99-108.
- Nakane K, Fujita Y, Terazawa R, et al (2012). Inhibition of cortactin and SIRT1 expression attenuates migration and invasion of prostate cancer DU145 cells. Int J Urol, 19, 71-9. https://doi.org/10.1111/j.1442-2042.2011.02888.x
- Noh SJ, Baek HA, Park HS, et al (2013). Expression of SIRT1 and cortactin is associated with progression of non-small cell lung cancer. Pathol Res Pract, 209, 365-70. https://doi.org/10.1016/j.prp.2013.03.011
- Pinheiro JJV, Nascimento CF, Freitas VM, et al (2011). Invadopodia proteins, cortactin and membrane type I matrix metalloproteinase (MT1-MMP) are expressed in ameloblastoma. Histopathol, 59, 1261-79.
- Saltel F, Daubon T, Juin A, et al (2011). Invadosomes: intriguing structures with promise. Eur J Cell Biol, 90, 100-7. https://doi.org/10.1016/j.ejcb.2010.05.011
- Seano G, Daubon T, Genot E, Primo L (2014). Podosomes as novel players in endothelial biology. Eur J Cell Biol, 93, 405-12. https://doi.org/10.1016/j.ejcb.2014.07.009
- Seltana A, Guezguez A, Lepage, M, Basora, N, Beaulieu, J-F (2013). Src family kinase inhibitor PP2 accelerates differentiation in human intestinal epithelial cells. Biochem Biophys Res Commun, 430, 1195-200. https://doi.org/10.1016/j.bbrc.2012.12.085
-
Shields MA, Krantz SB, Bentrem DJ, Dangi-Garimella S, Munshi HG (2012). Interplay between
${\beta}1$ -integrin and Rho signaling regulates differential scattering and motility of pancreatic cancer cells by snail and Slug proteins. J Biol Chem, 287, 6218-29. https://doi.org/10.1074/jbc.M111.308940 - Shvetsov A, Berkane E, Chereau D, Dominguez R, Reisler E (2009). The actin-binding domain of cortactin is dynamic and unstructured and affects lateral and longitudinal contacts in F-actin. Cell Motil Cytoskeleton, 66, 90-8. https://doi.org/10.1002/cm.20328
- Sibony-Benyamini H, Gil-Henn H (2012). Invadopodia: The leading force. Eur J Cell Biol, 91, 896-901. https://doi.org/10.1016/j.ejcb.2012.04.001
- Spinardi L, Rietdorf J, Nitsch L, et al (2004). A dynamic podosome-like structure of epithelial cells. Exp Cell Res, 295, 360-74. https://doi.org/10.1016/j.yexcr.2004.01.007
- Stevenson RP, Veltman D, Machesky LM (2012). Actin-bundling proteins in cancer progression at a glance. J Cell Sci, 125, 1073-9. https://doi.org/10.1242/jcs.093799
- Stylli SS, Kaye, AH, Lock P (2008). Invadopodia: At the cutting edge of tumour invasion. J Clin Neurosci, 15, 725-37. https://doi.org/10.1016/j.jocn.2008.03.003
- Suraneni P, Rubinstein B, Unruh JR, et al (2012). The Arp2/3 complex is required for lamellipodia extension and directional fibroblast cell migration. J Cell Biol, 197, 239-51. https://doi.org/10.1083/jcb.201112113
- Weaver AM (2008). Cortactin in tumor invasiveness. Cancer Lett, 265, 157-66. https://doi.org/10.1016/j.canlet.2008.02.066
- Weaver AM, Heuser JE, Karginov AV, et al (2002). Interaction of cortactin and N-WASP with Arp2/3 complex. Curr Biol, 12, 1270-8. https://doi.org/10.1016/S0960-9822(02)01035-7
- Webb BA, Eves R, Mak AS (2006). Cortactin regulates podosome formation: roles of the protein interaction domains. Exp Cell Res, 312, 760-9. https://doi.org/10.1016/j.yexcr.2005.11.032
- Yamada S, Yanamoto S, Kawasaki G, Mizuno A, Nemoto TK (2010). Overexpression of cortactin increases invasion potential in oral squamous cell carcinoma. Pathol Oncol Res, 16, 523-31. https://doi.org/10.1007/s12253-009-9245-y
- Yamaguchi H, Condeelis, J (2007). Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochim Biophys Acta, 1773, 642-52. https://doi.org/10.1016/j.bbamcr.2006.07.001
Cited by
- CDC42-interacting protein 4 promotes metastasis of nasopharyngeal carcinoma by mediating invadopodia formation and activating EGFR signaling vol.36, pp.1, 2017, https://doi.org/10.1186/s13046-016-0483-z
- ERK phosphorylation functions in invadopodia formation in tongue cancer cells in a novel silicate fibre-based 3D cell culture system vol.10, pp.4, 2018, https://doi.org/10.1038/s41368-018-0033-y
- Extracellular Vesicles Released by Glioblastoma Cells Stimulate Normal Astrocytes to Acquire a Tumor-Supportive Phenotype Via p53 and MYC Signaling Pathways pp.1559-1182, 2018, https://doi.org/10.1007/s12035-018-1385-1
- Changes in Vasodilator-Stimulated Phosphoprotein Phosphorylation, Profilin-1, and Cofilin-1 in Accreta and Protection by DHA pp.1933-7205, 2018, https://doi.org/10.1177/1933719118792095
- Increase in motility and invasiveness of MCF7 cancer cells induced by nicotine is abolished by melatonin through inhibition of ERK phosphorylation vol.64, pp.4, 2018, https://doi.org/10.1111/jpi.12467
- Putting VE-cadherin into JAIL for junction remodeling vol.132, pp.1, 2019, https://doi.org/10.1242/jcs.222893