DOI QR코드

DOI QR Code

In Vitro Effect of 808-nm Diode Laser on Proliferation and Glycosaminoglycan Synthesis of Rabbit Articular Chondrocytes

토끼 관절 연골세포의 증식과 글리코스아미노글리칸 합성에 대한 808-nm 다이오드 레이저의 효능 평가

  • Minar, Maruf (College of Veterinary Medicine, Chungbuk National University) ;
  • Hwang, Ya-won (College of Veterinary Medicine, Chungbuk National University) ;
  • Choi, Seok-hwa (College of Veterinary Medicine, Chungbuk National University) ;
  • Kim, Gonhyung (College of Veterinary Medicine, Chungbuk National University)
  • ;
  • 황야원 (충북대학교 수의과대학 수의외과학 교실) ;
  • 최석화 (충북대학교 수의과대학 수의외과학 교실) ;
  • 김근형 (충북대학교 수의과대학 수의외과학 교실)
  • Accepted : 2015.06.24
  • Published : 2015.08.31

Abstract

The aim of the study was to assess the in vitro effect of 808-nm InGaAs diode laser on rabbit articular chondrocyte proliferation and sulphated glycosaminoglycan (sGAG) synthesis in alginate bead. Previous studies revealed either positive or negative stimulatory effects of laser on different types of cells. A 808-nm InGaAs diode laser at 1.0W power output was used to irradiate the rabbit chondrocytes in alginate beads with energy densities of $31J/cm^2$ (G 1) and $62J/cm^2$ (G 2) corresponding to the experimental groups for 10 seconds and 20 seconds, respectively at 24, 48, 72 and 96 hours after seeding. Control group was left untreated. MTT assay was performed at 1 week and 2 weeks after the $1^{st}$ laser irradiation in alginate beads. sGAG synthesis in alginate beads at 1 week and 2 weeks were determined by DMMB assay. Histological evaluation for cellular distribution and sGAG deposition around the cells were performed by alcian blue stain. MTT assay revealed no positive stimulatory effect in cell proliferation in alginate bead. DMMB assay results showed significantly increased sGAG production in G 2 chondrocytes at 2 weeks. Image analysis of alcian blue stained slides also showed significantly higher percentage of positive alcian blue stain in G 2 chondrocytes. This result suggests that 808-nm InGaAs diode laser with 1.0 W power output although cannot stimulate cell proliferation it can increase the cell secretion activity and sGAG deposition in alginate beads.

본 연구의 목적은 알지네이트 비드에서 배양한 토끼의 관절 연골세포의 증식과 황산화 글리코스아미노글리칸 합성에 대한 808-nm InGaAs 다이오드 레이저의 효과를 확인하는 것이다. 이전의 연구들에서 서로 다른 종류의 세포에서 레이저의 양성 또는 음성 자극 효과가 알려졌다. 알지네이트 비드 내의 토끼 연골세포에 1.0W 세기의 808-nm InGaAs 다이오드 레이저가 $31J/cm^2$ (1 그룹), $62J/cm^2$ (2 그룹)의 에너지 밀도로 상응하는 그룹에 10초, 20초 동안 24, 48, 72, 96시간째에 각각 조사되었다. 대조군은 처리하지 않았다. 1차 레이저 조사 1주, 2주 후에 MTT 분석이 실시되었다. 황산화 글리코스아미노글리칸 합성은 DMMB 분석을 통해 평가되었다. 조직학적 평가를 위한 세포의 분포와 세포 주변의 황산화 글리코스아미노글리칸 침착은 알시안 블루 염색을 통해 평가되었다. MTT 분석을 통해 알지네이트 비드에서 세포 증식에는 양성 자극 효과가 없음을 알 수 있었다. DMMB 분석을 통해서 2 그룹의 2주차 연골세포에서 황산화 글리코스아미노글리칸 생성이 특이적으로 증가했음을 알 수 있었다. 알시안 블루 염색상에서도 2 그룹 연골세포에서 양성 염색상이 특이적으로 많은 비율을 차지함을 알 수 있었다. 본 연구를 통해 1.0 W 세기의 808-nm InGaAs 다이오드 레이저가 연골세포 증식에 영향이 없으나 알지네이트 비드에서 세포 분비 활동을 자극하여 황산화 글리코스아미노글리칸 침착을 증가시킬 수 있음을 확인하였다.

Keywords

References

  1. AlGhamdi KM, Kumar A, Moussa NA. Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells. Lasers Med Sci 2012; 27: 237-249. https://doi.org/10.1007/s10103-011-0885-2
  2. Arzi B, Wisner ER, Huey DJ, Kass PH, Hu J, Athanasiou KA. A proposed model of naturally occurring osteoarthritis in the domestic rabbit. Lab Anim (NY) 2012; 41: 20-25. https://doi.org/10.1038/laban0112-20
  3. Bibikova A, Oron U. Promotion of muscle regeneration in the toad (Bufo viridis) gastrocnemius muscle by low-energy laser irradiation. Anat Rec 1993; 235: 374-380. https://doi.org/10.1002/ar.1092350306
  4. Brosseau L, Welch V, Wells G, Tugwell P, de Bie R, Gam A, Harman K, Shea B, Morin M. Low level laser therapy for osteoarthritis and rheumatoid arthritis: a metaanalysis. J Rheumatol 2000; 27: 1961-1969.
  5. Conlan MJ, Rapley JW, Cobb CM. Biostimulation of wound healing by low-energy laser irradiation. A review. J Clin Periodontol 1996; 23: 492-496. https://doi.org/10.1111/j.1600-051X.1996.tb00580.x
  6. Coombe AR, Ho CT, Darendeliler MA, Hunter N, Philips JR, Chapple CC, Yum LW. The effects of low level laser irradiation on osteoblastic cells. Clin Orthod Res 2001; 4: 3-14. https://doi.org/10.1034/j.1600-0544.2001.040102.x
  7. Eduardo Fde P, Bueno DF, de Freitas PM, Marques MM, Passos-Bueno MR, Eduardo Cde P, Zatz M. Stem cell proliferation under low intensity laser irradiation: a preliminary study. Lasers Surg Med 2008; 40: 433-438. https://doi.org/10.1002/lsm.20646
  8. Gasparyan VC. Method of determination of aortic valve parameters for its reconstruction with autopericardium: An experimental study. J Thorac Cardiovasc Surg 2000; 119: 386-387. https://doi.org/10.1016/S0022-5223(00)70200-5
  9. Haas AF, Isseroff RR, Wheeland RG, Rood PA, Graves PJ. Low-energy helium-neon laser irradiation increases the motility of cultured human keratinocytes. J Invest Dermatol 1990; 94: 822-826. https://doi.org/10.1111/1523-1747.ep12874679
  10. Huang YY, Chen AC, Carroll JD, Hamblin MR. Biphasic dose response in low level light therapy. Dose Response 2009; 7: 358-383. https://doi.org/10.2203/dose-response.09-027.Hamblin
  11. Impellizeri JA, Tetrick MA, Muir P. Effect of weight reduction on clinical signs of lameness in dogs with hip osteoarthritis. J Am Vet Med Assoc 2000; 216: 1089-1091. https://doi.org/10.2460/javma.2000.216.1089
  12. Jia YL, Guo ZY. Effect of low-power He-Ne laser irradiation on rabbit articular chondrocytes in vitro. Lasers Surg Med 2004; 34: 323-328. https://doi.org/10.1002/lsm.20017
  13. Karu TI, Pyatibrat LV, Kalendo GS, Esenaliev RO. Effects of monochromatic low-intensity light and laser irradiation on adhesion of HeLa cells in vitro. Lasers Surg Med 1996; 18: 171-177. https://doi.org/10.1002/(SICI)1096-9101(1996)18:2<171::AID-LSM7>3.0.CO;2-P
  14. Liu H, Lee YW, Dean MF. Re-expression of differentiated proteoglycan phenotype by dedifferentiated human chondrocytes during culture in alginate beads. Biochim Biophys Acta 1998; 1425: 505-515. https://doi.org/10.1016/S0304-4165(98)00105-6
  15. Luger EJ, Rochkind S, Wollman Y, Kogan G, Dekel S. Effect of low-power laser irradiation on the mechanical properties of bone fracture healing in rats. Lasers Surg Med 1998; 22: 97-102. https://doi.org/10.1002/(SICI)1096-9101(1998)22:2<97::AID-LSM5>3.0.CO;2-R
  16. Marijnissen WJ, van Osch GJ, Aigner J, van der Veen SW, Hollander AP, Verwoerd-Verhoef HL, Verhaar JA. Alginate as a chondrocyte-delivery substance in combination with a non-woven scaffold for cartilage tissue engineering. Biomaterials 2002; 23: 1511-1517. https://doi.org/10.1016/S0142-9612(01)00281-2
  17. Mester E, Mester AF, Mester, A. The biomedical effects of laser application. Lasers Surg Med 1985; 5: 31-39. https://doi.org/10.1002/lsm.1900050105
  18. Moore P, Ridgway TD, Higbee RG, Howard EW, Lucroy MD. Effect of wavelength on low-intensity laser irradiationstimulated cell proliferation in vitro. Lasers Surg Med 2005; 36: 8-12. https://doi.org/10.1002/lsm.20117
  19. Ohgushi H, Goldberg VM, Caplan AI. Repair of bone defects with marrow cells and porous ceramic. Experiments in rats. Acta Orthop Scand 1989; 60: 334-339. https://doi.org/10.3109/17453678909149289
  20. Pelletier JP, Lajeunesse D, Hilal G, Jovanovic D, Fernandes JC, Martel-Pelletier J. Carprofen reduces the structural changes and the abnormal subchondral bone metabolism of experimental osteoarthritis. Osteoarthritis Cartilage 1999; 7: 327-328. https://doi.org/10.1053/joca.1998.0183
  21. Pinheiro AL, Carneiro NS, Vieira AL, Brugnera A Jr, Zanin FA, Barros RA, Silva PS. Effects of low-level laser therapy on malignant cells: in vitro study. J Clin Laser Med Surg 2002; 20: 23-26. https://doi.org/10.1089/104454702753474977
  22. Pogrel MA, Chen JW, Zhang K. Effects of low-energy gallium-aluminum-arsenide laser irradiation on cultured fibroblasts and keratinocytes. Lasers Surg Med 1997; 20: 426-432. https://doi.org/10.1002/(SICI)1096-9101(1997)20:4<426::AID-LSM8>3.0.CO;2-S
  23. Saito S, Shimizu N. Stimulatory effects of low-power laser irradiation on bone regeneration in midpalatal suture during expansion in the rat. Am J Orthod Dentofacial Orthop 1997; 111: 525-532. https://doi.org/10.1016/S0889-5406(97)70152-5
  24. Shefer G, Partridge TA, Heslop L, Gross JG, Oron U, Halevy O. Low-energy laser irradiation promotes the survival and cell cycle entry of skeletal muscle satellite cells. J Cell Sci 2002; 115: 1461-1469.
  25. Smith K. Light and life: the photobiological basis of the therapeutic use of radiation from lasers, in: ILTA Congress: Progress in laser therapy. Ohshiro T, Calderhead RG. (eds.). Okinawa: Wiley 1990.
  26. Soffa AJ, Markel MD, Converse LJ, Massa KL, Bogdanske JJ, Dillingham MF. Treatment of inflammatory arthritis by synovial ablation: a comparison of the holmium: YAG laser, electrocautery, and mechanical ablation in a rabbit model. Lasers Surg Med 1996; 19: 143-151. https://doi.org/10.1002/(SICI)1096-9101(1996)19:2<143::AID-LSM4>3.0.CO;2-S
  27. Son J, Kim YB, Ge Z, Choi SH, Kim G. Bone healing effects of diode laser (808 nm) on a rat tibial fracture model. In Vivo 2012; 26: 703-709.
  28. Stein A, Benayahu D, Maltz L, Oron U. Low-level laser irradiation promotes proliferation and differentiation of human osteoblasts in vitro. Photomed Laser Surg 2005; 23: 161-166. https://doi.org/10.1089/pho.2005.23.161
  29. Torricelli P, Giavaresi G, Fini M, et al. Laser biostimulation of cartilage: in vitro evaluation. Biomed Pharmacother 2001; 55: 117-120. https://doi.org/10.1016/S0753-3322(00)00025-1
  30. Wu JY, Wang YH, Wang GJ, Ho ML, Wang CZ, Yeh ML, Chen CH. Low-power GaAlAs laser irradiation promotes the proliferation and osteogenic differentiation of stem cells via IGF1 and BMP2. PLoS One 2012; 7: e44027. https://doi.org/10.1371/journal.pone.0044027
  31. Yu HS, Chang KL, Yu CL, Chen JW, Chen GS. Lowenergy helium-neon laser irradiation stimulates interleukin-1 alpha and interleukin-8 release from cultured human keratinocytes. J Invest Dermatol 1996; 107: 593-596. https://doi.org/10.1111/1523-1747.ep12583090