DOI QR코드

DOI QR Code

KLM 및 FEM 시뮬레이션을 이용한 비파괴검사용 선형배열 초음파 탐촉자의 설계 및 제작

Design and Fabrication of Linear-Array Ultrasonic Transducer Using KLM and FEM Simulation for Non-Destructive Testing

  • 투고 : 2015.01.07
  • 심사 : 2015.03.26
  • 발행 : 2015.04.30

초록

본 논문에서는 기존의 비파괴 초음파검사 시 사용되는 단일소자 탐촉자와 부채꼴 위상배열 탐촉자의 단점을 보완할 수 있는 선형배열 탐촉자를 설계 및 제작하였다. 선형배열 탐촉자는 KLM 해석 기반의 PiezoCAD 프로그램과 FEM 해석 기반의 PZFlex 프로그램을 사용하여 설계되었으며 고해상도를 위한 광대역 특성을 갖도록 압전소자 설계 시 2-2 복합체 구조를 도입하였다. 설계된 적층 구조를 바탕으로 128개 소자를 갖는 선형배열 탐촉자를 제작하고 시뮬레이션 결과와 성능 비교를 수행하였다. 제작된 선형배열 탐촉자는 5.5 MHz의 중심주파수를 가지며 -6 dB 에서 70%의 주파수 대역폭을 나타내어 초음파검사 시 검사체 내부의 효과적인 영상을 제공할 수 있을 것으로 기대한다.

In this paper, a linear-array transducer capable of overcoming the faults of a single element and phased array transducers with convex shape for non-destructive ultrasonic testing was designed and fabricated. A 5.5 MHz linear-array transducer was designed using the PiezoCAD program based on the KLM analysis and the PZFlex program based on the FEM analysis. A 2-2 composite structure was employed to achieve broad-band characteristics. A 128 element linear-array transducer was fabricated and its performance was compared with the simulation results. The center frequency of the fabricated transducer was 5.5 MHz and the -6 dB frequency bandwidth was 70 %. Thus, we expect that the designed transducer can provide an effective inner image of the test material during non-destructive ultrasonic testing.

키워드

참고문헌

  1. D. M. McCann and M. C. Forde, "Review of NDT methods in the assessment of concrete and masonry structures," NDT&E International, Vol. 34, No. 2, pp. 71-84 (2001) https://doi.org/10.1016/S0963-8695(00)00032-3
  2. R. S. C. Cobbold, "Foundations of Biomedical Ultrasound," New York, USA, pp. 460-491 (2007)
  3. K. C. Cheng, H. L. W. Chan, C. L. Choy, Q. Yin, H. Luo and Z. Yin, "Single crystal PMN-0.33PT/epoxy 1-3 composites for ultrasonic transducer applications," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 50, No. 9, PP. 1177-1183 (2003) https://doi.org/10.1109/TUFFC.2003.1235328
  4. J. H. Cha and J. H. Chang, "Development of 15 MHz 2-2 piezo-composite ultrasound linear array transducers for ophthalmic imaging," Sensors and Actuators A: Physical, Vol. 217, pp. 39-48 (2014) https://doi.org/10.1016/j.sna.2014.06.024
  5. W. A. Smith and B. A. Auld, "Modeling 1-3 composite piezoelectrics: thickness-mode oscillations," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 38, No. 1, pp. 40-47 (1991) https://doi.org/10.1109/58.67833
  6. T. A. Ritter, T. R. Shrout, R. Tutwiler and K. K. Shung, "A 30-MHz piezo-composite ultrasound array for medical imaging applications," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 49, No. 2, pp. 217-230 (2002) https://doi.org/10.1109/58.985706