DOI QR코드

DOI QR Code

피질골판이 해면질골의 초음파 특성에 미치는 영향

Influence of Cortical Endplates on Ultrasonic Properties of Trabecular Bone

  • 투고 : 2014.12.29
  • 심사 : 2015.01.28
  • 발행 : 2015.04.30

초록

본 연구에서는 골절 위험도가 높은 대퇴골의 두꺼운 피질골판이 해면질골의 초음파 특성에 미치는 영향을 조사하였다. 이를 위해 소의 대퇴골을 이용하여 12개의 해면질골을 제작하였으며, 피질골과 유사한 밀도 및 음속을 갖는 아크릴을 이용하여 피질골판을 모사하는 1.25, 1.80, 및 2.75 mm의 두께를 갖는 아크릴판을 제작하였다. 해면질골 양면에 부착된 아크릴판의 두께가 증가하더라도 음속과 해면질골의 겉보기 골밀도 사이에 Pearson 상관계수는 0.80-0.86의 값을 가지며, 높은 상관관계가 존재하는 것으로 나타났다. 또한 0.5 MHz에서 측정된 감쇠계수와 해면질골의 겉보기 골밀도 사이에 Pearson 상관계수는 0.84-0.91의 값을 가지며, 높은 상관관계가 존재하는 것으로 나타났다. 이와 같은 결과로부터 종골에 비해 상대적으로 더 두꺼운 피질골판을 갖는 대퇴골에서 측정된 음속 및 특정 주파수에서의 감쇠계수는 대퇴골의 골밀도를 예측하기 위한 지표로서 이용될 수 있음을 알 수 있다.

The present study investigated the influence of thick cortical endplates on the ultrasonic properties of trabecular bone in a femur with a high fracture risk. Twelve trabecular bone samples were prepared from bovine femurs, and acrylic plates with thicknesses of 1.25, 1.80, and 2.75 mm were manufactured to simulate the cortical endplates using acrylic with a density and a sound speed similar to cortical bone. Although the thickness of the acrylic plates attached to the two sides of the trabecular bone increased, high correlations were observed between the speed of sound and the apparent bone density of the trabecular bone, with Pearson's correlation coefficients of 0.80-0.86. High correlations were also observed between the attenuation coefficient at 0.5 MHz and the apparent bone density of the trabecular bone, with Pearson's correlation coefficients of 0.84-0.91. These results suggest that the speed of sound and attenuation coefficient at a specific frequency measured in a femur with relatively thick cortical endplates compared to the calcaneus could be used as indices for predicting the bone mineral density of the femur.

키워드

참고문헌

  1. K. I. Lee and S. W. Yoon, "Ultrasonic diagnosis of osteoporosis," Journal of the Acoustical Society of Korea, Vol. 29, No. 2E, pp. 64-72 (2010)
  2. H. Y. Chung, "Osteoporosis diagnosis and treatment 2007," Journal of Korean Endocrine Society, Vol 23, No. 2, pp. 76-108 (2008) https://doi.org/10.3803/jkes.2008.23.2.76
  3. P. Laugier, "Age related decrements in bone mineral density in women over 65," Journal of Bone and Mineral Research, Vol. 7, No. 6, pp. 625-632 (1992) https://doi.org/10.1002/jbmr.5650070606
  4. P. Laugier, "Instrumentation for in vivo ultrasonic characterization of bone strength," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 55, No. 6, pp. 1179-1196 (2008) https://doi.org/10.1109/TUFFC.2008.782
  5. Y. L. Shin, "Assessment of bone mineral density," Journal of Korean Society of Pediatric Endocrinology, Vol. 11, No. 2 pp. 123-130 (2006)
  6. F. Padilla, F. Jenson, V. Bousson, F. Peyrin and P. Laugier, "Relationships of trabecular bone structure with quantitative ultrasound parameters: In vitro study on human proximal femur using transmission and backscatter measurements," Bone, Vol. 42, No. 6, pp. 1193-1202 (2008) https://doi.org/10.1016/j.bone.2007.10.024
  7. R. Barkmann, S. Dencks, P. Laugier, F. Padilla, K. Brixen, J. Ryg, A. Seekamp, L. Mahlke, A. Bremer, M. Heller, and C. C. Gluer, "Femur ultrasound (FemUS)-first clinical results on hip fracture discrimination and estimation of femoral BMD," Osteoporosis International, Vol. 21, No. 6, pp. 969-976 (2010) https://doi.org/10.1007/s00198-009-1037-4
  8. C. C. Gluer, R. Eastell, D. M. Reid, D. Felsenberg, C. Roux, R. Barkmann, W. Timm, T. Blenk, G. Armbrecht, A. Stewart, J. Clowes, F. E. Thomasius and S. Kolta, "Association of five quantitative ultrasound devices and bone densitometry with osteoporotic vertebral fractures in a population-based sample: The OPUS study," Journal of Bone and Mineral Research, Vol. 19, No. 5, pp. 782-793 (2004) https://doi.org/10.1359/jbmr.040304
  9. C. M. Langton, C. F. Njeh, R. Hodgskinson and J. D. Currey, "Prediction of mechanical properties of the human calcaneus by broadband ultrasonic attenuation," Bone, Vol. 18, No. 6, pp. 495-503 (1996) https://doi.org/10.1016/8756-3282(96)00086-5
  10. K. I. Lee and M. J. Choi, "Phase velocity and normalized broadband ultrasonic attenuation in polyacetal cuboid bone-mimicking phantoms," Journal of the Acoustical Society of America, Vol. 121, No. 6, pp. EL263-EL269 (2007) https://doi.org/10.1121/1.2719046
  11. M. A. Greenfield, J. D. Craven, A. Heddleston, M. L. Kehrer, D. Wishko and R. Stern, "Measurement of the velocity of ultrasound in human cortical bone in vivo," Radiology, Vol. 138, No. 3, pp. 701-710 (1981) https://doi.org/10.1148/radiology.138.3.7465850