DOI QR코드

DOI QR Code

Thermally Adjusted Graphene Oxide as the Hole Transport Layer for Organic Light-Emitting Diodes

열처리된 그래핀 산화물을 정공주입층으로 이용한 유기발광 다이오드

  • Received : 2015.06.01
  • Accepted : 2015.06.30
  • Published : 2015.08.15

Abstract

This paper reports on thermally adjusted graphene oxide (GO) as the hole transport layer (HTL) for organic light-emitting diodes (OLEDs). GO is generally not suitable for HTL of OLEDs because of intrinsic specific resistance. In this paper, the specific resistance of GO is adjusted by the thermal annealing process. The optimum specific resistance of HTL is found to be $10^2{\Omega}{\cdot}m$, and is defined by the maximum current efficiency of OLEDs, 2 cd/A. In addition, the reasons for specific resistance change are identified by x-ray photoelectron spectroscopy (XPS). First, the XPS results show that several functional groups of GO were detached by thermal energy, and the amount of epoxide changed substantially following the temperature. Second, the full width at half maximum (FWHM) of the C-C bond decreased during the process. That means the crystallinity of the graphene improved, which is the scientific basis for the change in specific resistance.

Keywords

References

  1. Geim, A. K., Novoselov, K. S., 2007, The Rise of Graphene, Nature Materials, 6:3 183-191. https://doi.org/10.1038/nmat1849
  2. Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber, T., Peres, N. M. R., Geim, A. K., 2008, Fine Structure Constant Defines Visual Transparency of Graphene, Science, 320:5881 1308. https://doi.org/10.1126/science.1156965
  3. Balog, R., Jorgensen, B., Nilsson, L., Andersen, M., Rienks, E., Bianchi, M., Fanetti, M., Lagsgaard, E., Baraldi, A., Lizzit, S., 2010, Bandgap Opening in Graphene Induced by Patterned Hydrogen Adsorption, Nature Materials, 9:4 315-319. https://doi.org/10.1038/nmat2710
  4. Park, J., Jo, S. B., Yu, Y. J., Kim, Y., Yang, J. W., Lee, W. H., Kim, H. H., Hong, B. H., Kim, P., Cho, K., Kim, K. S., 2012, Single-gate Bandgap Opening of Bilayer Graphene by Dual Molecular Doping, Adv. Mater., 24:3 407-411. https://doi.org/10.1002/adma.201103411
  5. Han, M. Y., Ozyilmaz, B., Zhang, Y., Kim, P., 2007, Energy Band-gap Engineering of Graphene Nanoribbons, Phys. Rev. Lett., 98:20 206805. https://doi.org/10.1103/PhysRevLett.98.206805
  6. Papagno, M., Rusponi, S., Sheverdyaeva, P. M., Vlaic, S., Etzkorn, M., Pacile, D., Moras, P., Carbone, C., Brune, H., 2012, Large Band Gap Opening between Graphene Dirac Cones Induced by Na Adsorption on to an Ir Superlattice, ACS NANO, 6:1 199-204. https://doi.org/10.1021/nn203841q
  7. Schniepp, H. C., Li, J. L., Mcallister, M. J., Sai, H., Herrera-Alonso, M., Adamson, D. H., Prud'homme, R. K., Car, R., Saville, D. A., Aksay, I. A., 2006, Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide, The Journal of Physical Chemistry B, 110:17 8535-8539. https://doi.org/10.1021/jp060936f
  8. Mcallister, M. J., Li, J. L., Adamson, D. H., Schniepp, H. C., Abdala, A. A., Liu, J., Herrera-Alonso, M., Milius, D. L., Car R., Prud'homme, R. K., Aksay, I. A., 2007, Single Sheet Functionalized Graphene by Oxideation and Thermal Expansion of Graphite, Chem. Mater., 19:18 4396-4404. https://doi.org/10.1021/cm0630800
  9. Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S. T., Ruoff, R. S., 2007, Synthesis of graphene-based Nanosheets Via Chemical Reduction of Exfoliated Graphite Oxide, Carbon, 45:7 1558-1565. https://doi.org/10.1016/j.carbon.2007.02.034
  10. Hirata, M, Gotou, T., Horiuchi, S., Fujiwara, M., Ohba, M., 2004, Thin-film Particles of Graphite Oxide 1: High-yield Synthesis and Flexibility of the Particles, Carbon, 42:14 2929-2937. https://doi.org/10.1016/j.carbon.2004.07.003
  11. Park, S., Ruoff, R. S., 2009, Chemical Methods for the Production of Graphenes, Nature Nanotech., 4:4 217-224. https://doi.org/10.1038/nnano.2009.58
  12. Cote, L. J., Cruz-Silva, R., Huang, J., 2009, Flash Reduction and Patterning of Graphite Oxide and Its Polymer Composite, Journal of the American Chemical Society, 131:31 11027-11032. https://doi.org/10.1021/ja902348k
  13. Stankovich S., Dikin D. A., Dommett G. H. B., Kohlhaas K. M., Zimney E. J., Stach E. A., Piner R. D., Nguyen S. T., Ruoff R. S., 2006, Graphene-based composite materials, Nature, 442, 282-286. https://doi.org/10.1038/nature04969
  14. He, Q., Wu, S., Gao, S., Cao, X., Yin, Z., Li, H., Chen, P., Zhang, H., 2011, Transparent, Flexible, All-reduced Graphene Oxide Thin Film Transistors, ACS NANO, 5:6 5038-5044. https://doi.org/10.1021/nn201118c
  15. Joung, D., Chunder, A., Zhai, L., Khondaker, S. I., 2010, High Yield Fabrication of Chemically Reduced Graphene Oxide Field Effect Transistors by Dielectrophoresis, Nanotechnolgy, 21:16 165202-165206. https://doi.org/10.1088/0957-4484/21/16/165202
  16. Li, S. S., Tu, K. H., Lin, C. C., Chen, C. W., Chhowalla, M., 2010, Solution-processable Graphene Oxide as an Efficient Hole Transport Layer in Polymer Solar Cells, ACS NANO, 4:6 3169-3174. https://doi.org/10.1021/nn100551j
  17. Yun, J. M., Yeo, J. S., Kim, J., Jeong, H. G., Kim, D. Y., Noh, Y. J., Kim, S. S., Ku, B. C., Na S. I., 2011, Solution-processable Reduced Graphene Oxide as a Novel Alternative to PEDOT:PSS Hole Transport Layers for Highly Efficient and Stable Polymer Solar Cells, Adv. Mater., 23:42 4923-4928. https://doi.org/10.1002/adma.201102207
  18. Lee, B. R., Kim, J. W., Kang, D., Lee, D. W., Ko, S. J., Lee, H. J., Lee, C. L., Kim, J. Y., Shin, H. S., Song, M. H., 2012, Highly Efficient Polymer Light-Emitting Diodes Using Graphene Oxide as a Hole Transport Layer, ACS NANO., 6:4 2984-2991. https://doi.org/10.1021/nn300280q
  19. Hummers, W. S., Offeman, R. E., 1958, Preparation of Graphite Oxide, J. AM. Chem. Soc. 80:6 1339-1399. https://doi.org/10.1021/ja01539a017
  20. Kim, G. W., Jeon, K. M., Youn, H., Yang, M. Y., 2012, The Efficiency Enhancement of Organic Light-emitting Diodes Fabricated by Solution Process, International Conference of Manufacturing Technology Engineers, 168.
  21. Seok, J. Y., Lee, J., Yang, M. Y., 2015, Indium Tin Oxide-free Large-area Flexible Organic Light-emitting Diodes Utilizing Highly Conductive PEDOT:PSS Anode Fabricated by the Knife Coating Method, J. Korean Soc. Manuf. Technol. Eng., 24:1, 049-055.
  22. Sung, J., Lee, E., 2008, Simulation of Molecular Flows Inside a Guide Block in the OLED Deposition Process, Transactions of the Korean Society of Machine Tool Engineers, 17:2, 045-050.