DOI QR코드

DOI QR Code

복숭아명나방과 사과애모무늬잎말이나방에 대한 환경조절열처리를 이용한 사과 수확 후 처리기술

Post-harvest Treatment on the Peach Pyralid Moth and the Small Tea Tortrix Moth Infesting Apples Using Controlled Atmosphere and Temperature Treatment System

  • Hong, Youkyeong (Department of Bioresource Sciences, Andong National University) ;
  • Kwon, Kimyeon (Institute of Biological Utility) ;
  • Kim, Yonggyun (Department of Bioresource Sciences, Andong National University)
  • 투고 : 2014.11.19
  • 심사 : 2015.01.26
  • 발행 : 2015.03.01

초록

국내 사과를 외국으로 수출하기 위해서는 수입국의 검역 대상 해충을 완전히 제거하는 것이 필수적이다. 이를 위한 수확 후 해충 사멸 기술로서 환경조절열처리(controlled atmosphere and temperature treatment system: CATTS) 기술이 개발되고 있다. 본 연구는 상이한 가해 습성으로 사과 과실에 피해를 주는 두 해충에 대해 CATTS의 사멸조건을 결정하였다. 사과애모무늬잎말이나방(Adoxophyes paraorana)은 사과 과실 표면을 가해하는 해충인 반면 복숭아명나방(Dichocrocis punctiferalis)은 과실의 내부를 가해한다. 여러 가해 발육태 가운데 두 곤충 모두 5령 유충이 열에 대한 내성이 가장 높았다. 고농도(15%)의 이산화탄소, 저농도(1%) 산소 및 $46^{\circ}C$ 온도 조건에서 1 시간 동안 처리하는 CATTS 처리조건은 사과애모무늬잎말이나방 5령 유충을 100% 사멸시켰다. 그러나 동일한 CATTS 조건에서 복숭아명나방 5령 유충은 88%의 사멸 효과를 보였으며, 100% 사멸 효과를 나타내기 위해서는 2 시간의 열처리를 요구했다. 이를 바탕으로 사과를 가해하고 있는 두 종의 5령 유충 3,000 마리 이상에 대해서 각각 CATTS 처리 효과를 확증하였다. 본 연구는 완전 사멸을 위해서는 심식충이 비심식충에 비해 장기간 CATTS 처리가 요구 된다는 것을 보여 주었다.

A complete control on quarantine insect pests is required for exporting domestic apples to other countries. To this end, a controlled atmosphere and heat treatment system (CATTS) has been developed as a post-harvest treatment. This study determined the CATTS conditions to control completely two lepidopteran insect pests, the smaller tea tortrix moth, Adoxophyes paraorana and the peach pyralid moth, Dichocrocis punctiferalis, which exhibit different feeding behviors. In both species, the fifth instar larvae were the most tolerant developmental stage to the heat treatment. Under CATTS conditions with 15% $CO_2$ and 1% $O_2$ for 1 h heat treatment at $46^{\circ}C$, the fifth instar larvae of A. paraorana exhibited a complete lethality, while those of D. punctiferalis underwent 88% mortality. To control completely the fifth instar larvae of D. punctiferalis, 2 h heat treatment required under the same atmosphere condition. These CATTS treatment effects were confirmed against over 3,000 fifth instar larvae of each species infesting apples. This study demonstrates that the longer exposure to CATTS conditions is required for the complete disinfestation of the internal apple feeder compared to the non-internal apple feeder.

키워드

참고문헌

  1. Butz, P., Tauscher, B., 1995. Inactivation of fruit fly eggs by high pressure treatment. J. Food Process. Preserv. 19, 161-164. https://doi.org/10.1111/j.1745-4549.1995.tb00285.x
  2. Byun, B.K., Lee, B.W., Lee, E.S., Choi, D.S., Park, Y.M., Yang, C.Y., Lee, S.K., Cho, S., 2011. A review of the genus Adoxophyes (Lepidoptera: Tortricidae) in Korea, with description of A. paraorana sp. nov. Anim. Cell. Sys. 16, 154-161.
  3. Carpenter, A., Potter, M., 1994. Controlled atmospheres. pp. 171-198. In Quarantine treatments for pests and food plants. eds. by J.L. Sharp, G.J. Hallman. Westview, Boulder, CO.
  4. Choi, K.S., 1998. The peach pyralid moth, Dichocrocis purictiferalis Gueneѐ (Lepidoptera: Pyralidae), adults: circadian rhythms in activity and seasonal occurrence at chestnut orchards. Ph.D. Dissertation, Seoul National University, Seoul, Korea.
  5. Choi, K.H., Lee, D.H., Byun, B.K., Mochizuki, F., 2009. Occurrence of Grapholita dimorpha Komai (Lepidoptera: Tortricidae), a new insect pest in apple orchards of Korea. Kor. J. Appl. Entomol. 48, 417-421. https://doi.org/10.5656/KSAE.2009.48.4.417
  6. Choi, K.S., Han, K.S., Jeon, M.J., Chung, Y.J., Kim, C.S., Shin, S.C., Park, J.D., Boo, K.S., 2004. Seasonal occurrence of the peach pyralid moth, Dichocrocis punctiferalis at chestnut orchards in some provinces of Korea. J. Kor. For. Soc. 93, 134-139.
  7. Clary, D.O., Wolstenholme, D.R., 1985. The mitochondrial DNA molecule of Drosophila yakuba: nucleotide sequence, gene organization, and genetic code. J. Mol. Evol. 22, 252-271. https://doi.org/10.1007/BF02099755
  8. Follett, P.A., Neven, L.G., 2006. Current trends in quarantine entomology. Annu. Rev. Entomol. 51, 359-385. https://doi.org/10.1146/annurev.ento.49.061802.123314
  9. Hollingsworth, R.G., Armstrong, J.W., 2005. Potential of temperature, controlled atmospheres, and ozone fumigation to control thrips and mealybugs on ornamental plants for export. J. Econ. Entomol. 98, 289-298. https://doi.org/10.1093/jee/98.2.289
  10. Ikediala, J.N., Tang, J., Neven, L.G., Drake, S.R., 1999. Quarantine treatment of cherries using 915 MHz microwaves: temperature mapping, codling moth mortality and fruit quality. Postharvest Biol. Technol. 16, 127-137. https://doi.org/10.1016/S0925-5214(99)00018-6
  11. Jo, H., Kim, Y., 2001. Relationship between cold hardiness and diapause in the smaller tea tortrix, Adoxophyes orana (Fischer von Roslersthamm). J. Asia Pac. Entomol. 4, 1-9. https://doi.org/10.1016/S1226-8615(08)60094-1
  12. Jung, C.R., Kim, Y., 2011. Different types of fruit damages of three internal apple feeders diagnosed with mitochondrial molecular markers. J. Asia Pac. Entomol. 16, 189-197.
  13. Jung, C.R., Kwon, K., Kim, Y., 2014. A postharvest control technique of the oriental fruit moth, Grapholita molesta, infesting apples using CATTS. Kor. J. Appl. Entomol. 53, 73-80. https://doi.org/10.5656/KSAE.2014.01.1.069
  14. Jung, J.K., Han, K.S., Choi, K.S., Boo, K.S., 2000. Sex pheromone composition for field-trapping of Dichocrocis punctiferalis (Lepidoptera: Pyralidae) males. Kor. J. Appl. Entomol. 39, 105-110.
  15. Kells, S.A., Mason, L.J., Maier, D.E., Woloshuk, C.P., 2001. Efficacy ad fumigation characteristics of ozone in stored maize. J. Stored Prod. Res. 37, 371-382. https://doi.org/10.1016/S0022-474X(00)00040-0
  16. Konno, Y., Honda, H., Matsumoto, Y., 1981. Mechanisms of reproductive isolation between the fruit-feeding and the Pinaceae feeding types of the yellow peach moth, Dichocrocis punctiferalis Guenee. Appl. Entomol. Zool. 25, 253-258. https://doi.org/10.1303/jjaez.25.253
  17. Lee, S., 1993. Handbook of integrated pest management in apple orchard. pp. 153-154.
  18. Liu, Y.B., 2003. Effects of vacuum and controlled atmosphere on insect mortality and lettuce quality. J. Econ. Entomol. 96, 1110-1117.
  19. McEvoy, M., 2003. Organic certification in the United States and Europe 9 Oct. 2007. http://postharvest.tfrec.wsu.edu/PC2003E.pdf.
  20. Nelson, S.O., 1996. Review and assessment of radio-frequency and microwave energy for stored-grain insect control. Trans. ASAE 39, 1475-1484. https://doi.org/10.13031/2013.27641
  21. Neven, L.G., 2000. Physiological responses of insects to heat. Postharvest Biol. Technol. 21, 103-111. https://doi.org/10.1016/S0925-5214(00)00169-1
  22. Neven, L.G., 2008. Organic quarantine treatment for tree fruits. HortScience 43, 22-26.
  23. Neven, L.G., Drake, S.R., 2000. Comparison of alternative quarantine treatments for sweet cherries. Postharvest Biol. Technol. 20, 107-114. https://doi.org/10.1016/S0925-5214(00)00110-1
  24. Neven, L.G., Drake, S.R., Shellie, K., 2001. Development of a high temperature controlled atmosphere quarantine treatment for pome and stone fruits. Acta Hortic. 553, 457-460.
  25. Neven, L.G., Hansen, L.D., 2010. Effects of temperature and controlled atmospheres on codling moth metabolism. Ann. Entomol. Soc. Am. 103, 418-413. https://doi.org/10.1603/AN09133
  26. Neven, L.G., Follett, P.A., Raghubeer, E., 2007. Potential for high hydrostatic pressure processing to control quarantine insects in fruit. J. Econ. Entomol. 100, 1499-1503. https://doi.org/10.1093/jee/100.5.1499
  27. Neven, L.G., Mitcham, E.J., 1996. CATTS: controlled atmosphere temperature treatment system, a novel approach to the development of quarantine treatments. Am. Entomol. 42, 56-59. https://doi.org/10.1093/ae/42.1.56
  28. Neven, L.G., Rehfield-Ray, L., 2006. Confirmation and efficacy tests against codling moth and oriental fruit moth in apples using combination heat and controlled atmosphere treatments. J. Econ. Entomol. 99, 1620-1627. https://doi.org/10.1093/jee/99.5.1620
  29. NOP (National Organic Program), 2007. National Organic Program. http://www.ams.usda.gov/nop/indexIE.htm.
  30. Northwest Horticultural Council, 2006. Export manual. 9 Oct. 2007. http://www.nwhort.org.
  31. Obenland, D., Neipp, P., Mackey, B., Neven, L.G., 2005. Peach and nectarine quality following treatment with high temperature forced air combined with controlled atmospheres. HortScience 40, 1425-1430.
  32. Park, H., Park, I.J., Lee, S.Y., Han, K.S., Yang, C.Y., Boo, K.S., Park, K.T., Lee, J.W., Cho, S., 2008. Molecular identification of Adoxophyes orana complex (Lepidoptera: Tortricidae) in Korea and Japan. J. Asia Pac. Entomol. 11, 49-52. https://doi.org/10.1016/j.aspen.2008.04.002
  33. Paull, R.E., Armstrong, J.W., 1994. Insect pests and fresh horticultural products: treatments and responses. CAB International, Wallingford, UK.
  34. Pimentel D., Lach, L., Zuniga, R., Morrison, D., 2002. Environmental and economic costs of alien arthropods and other organisms in the United States. pp. 285-303. In Invasive arthropods in agriculture: problems and solutions. eds. by G.J. Hallman, C.P. Schwalbe. Science, Enfield, NH.
  35. Sharp, J.L., Hallman, G.J., 1994. Quarantine treatments for pests and food plants. Westview, Boulder, CO.
  36. Shrestha, S., Abdul, M., Kim, S., Kwon, M., Lee, D., Kim, Y., 2009. Diagnostic molecular markers of six lepidopteran insect pests infesting apples in Korea. J. Asia Pac. Entomol. 12, 107-111. https://doi.org/10.1016/j.aspen.2009.01.002
  37. Son, Y., Choi, K.H., Kim, Y., Kim, Y., 2010. Application of CATTS as a postharvest phytosanitation technology against the peach fruit moth, Carposina sasakii Matsumura. Kor. J. Appl. Entomol. 49, 37-42. https://doi.org/10.5656/KSAE.2010.49.1.037
  38. Son, Y., Chon, I., Neven, L., Kim, Y., 2012a. Controlled atmosphere and temperature treatment system to disinfest fruit moth, Carposina sasakii (Lepidoptera: Carposinidae) on apples. J. Econ. Entomol. 105, 1540-1547. https://doi.org/10.1603/EC12133
  39. Son, Y., Lee, J., Kim, Y., 2012b. Controlled efficacy of controlled atmosphere and temperature treatment system against the hawthorn spider mite, Tetranychus viennensis. Kor. J. Appl. Entomol. 51, 131-140. https://doi.org/10.5656/KSAE.2012.04.0.08
  40. Tang, J., Ikediala, J.N., Wang, S., Hansen, J.D., Cavalieri, R.P., 2000. High-temperature short-time thermal quarantine methods. Postharvest Biol. Technol. 21, 129-145. https://doi.org/10.1016/S0925-5214(00)00171-X
  41. Toba, H.H., Howell, J.F., 1991. An improved system for mass-rearing codling moths. J. Entomol. Soc. Br. Columbia 88, 22-27.
  42. Torres, J.A., Velazquez, G., 2005. Commercial opportunities and research challenges in the high pressure processing of foods. J. Food Eng. 67, 95-112. https://doi.org/10.1016/j.jfoodeng.2004.05.066
  43. Wang, S., Tang, J., Johnson, J.A., Micham, E., Hansen, J.D., 2002. Process protocols based on radio frequency energy to control field and storage pests in inshell walnuts. Postharvest Biol. Technol. 26, 265-273. https://doi.org/10.1016/S0925-5214(02)00048-0