DOI QR코드

DOI QR Code

In-situ Patterning of Magnetic Particles in Microfluidic Channels by Forward/Reverse Local Magnet Arrangement

국소 자기장의 순/역 배열을 이용한 미세유체 채널 내에서의 강자성 입자 패턴 형성

  • Park, Hyoun-Hyang (Nano-Convergence Mechanical Systems Research Division, Korea Institute of Machinery and Materials) ;
  • Lee, Ji Hae (School of Mechanical and Aerospace Engineering, Hanbat Nat’l Univ.) ;
  • Yoo, Yeong Eun (Nano-Convergence Mechanical Systems Research Division, Korea Institute of Machinery and Materials) ;
  • Kim, Jung-Yup (Nano-Convergence Mechanical Systems Research Division, Korea Institute of Machinery and Materials) ;
  • Chang, Sunghwan (Nano-Convergence Mechanical Systems Research Division, Korea Institute of Machinery and Materials)
  • 박현향 (한국기계연구원 나노융합기계연구본부) ;
  • 이지혜 (국립한밭대학교 화학생명공학과) ;
  • 유영은 (한국기계연구원 나노융합기계연구본부) ;
  • 김정엽 (한국기계연구원 나노융합기계연구본부) ;
  • 장성환 (한국기계연구원 나노융합기계연구본부)
  • Received : 2015.01.16
  • Accepted : 2015.08.04
  • Published : 2015.09.01

Abstract

The patterning of microbead in microfluidics channel is a practical technique for application in bio and medical areas. An approach is described for a direct patterning of magnetically active microbeads in microfluidic devices without inner structure. Local magnet arrangements - flat arrangement and stack arrangement - contacting same poles or opposite poles of magnet were utilized for generating trapping magnetic fields. The arrangement of magnets contacting same poles generated isolated patterns by repelling of magnetic field. The flat arrangement of vertically reverse magnet arrays shaped trapping patterns repelling magnetic field line between same poles. Spatially, the stack compositions of magnet arrangements allow diverse isolated trapped patterns of magnetic particles. Trapped magnetic particles in fluidic channels were stable on the $18m{\ell}/hr$ flow conditions and magnetic force of 1.08 mT in the all experiments. This experimental study suggests the simple and versatile methods to pattern magnetic particles, and has potential of wide application to bio and medical area.

유체채널 내에서의 미세입자의 패터닝은 생물 및 의료 응용분야에서 활용될 가치가 높은 응용 기술이다. 본 연구는 미세유체 채널 내에서 구조물 없이 외부 자석의 배열만을 이용한 미세입자 패터닝 방법을 제안한다. 자석의 같은 극과 서로 다른 극끼리의 배열을 이용한 일렬 배열, 적층 배열 등을 고안하여, 다양한 미세입자 패터닝에 실험적으로 적용하였다. 서로 같은 극끼리의 배열은 입자 포획에 쉽게 적용 가능하여, 독립적 배열이 가능하였다. 특히 적층 배열은 다양한 패터닝을 할 수 있음을 확인할 수 있었다. 자기력 1.08mT 수준에서까지 자석 배열에 의한 일정한 패턴을 관찰할 수 있었고, 패터닝된 입자들은 20 ml/hr 의 유체 속도에서도 안정하게 유지되었다. 본 연구는 간단하면서도 자성 입자의 다양한 패터닝을 가능케 하는 방법으로 면역자기성 입자를 이용한 의학/바이오 분야로의 폭넓은 응용을 기대케 한다.

Keywords

References

  1. Baier, T., Mohanty, S., Drese, K. S., Rampf, F., Kim, J. and Schonfeld, F., 2009, "Modelling Immunomagnetic Cell Capture in CFD," Microfluid. Nanofluid., Vol. 7, pp. 205-216. https://doi.org/10.1007/s10404-008-0376-3
  2. Furlani, E. P., Sahoo, Y., Ng, K. C., Wortman, J. C. and Monk, T. E., 2007, " A Model for Predicting Magnetic Particle Capture in a Microfluidic Bioseparator," Biomed. Microdevices, Vol. 9, pp. 451-463. https://doi.org/10.1007/s10544-007-9050-x
  3. Aytur, T., Foley, J., Anwar, M., Boser, B., Harris, E., Beatty, P.R., 2006, "A Novel Magnetic Bead Bioassay Platform Using a Microchip-Based Sensor for Infectious Disease Diagnosis.," J. Immunol. Methods, Vol. 314, pp. 21-29. https://doi.org/10.1016/j.jim.2006.05.006
  4. Deng, T., Prentiss, M. and Whitesides, G. M., 2002, "Fabrication of Magnetic Microfiltration Systems Using Soft Lithography ," Appl. Phys. Lett. vol. 80, pp. 461-463. https://doi.org/10.1063/1.1436282
  5. Lyles, B. F., Terrot, M. S., Hammond, P. T. and Gast, A. P., 2004, "Directed Patterned Adsorption of Magnetic Beads on Polyelectrolyte Multilayers on Glass," Langmuir, Vol. 20, No. 8, pp.3028-3031. https://doi.org/10.1021/la049486d
  6. Campbell, C. J. and Grzybowski, B. A., "Microfluidic Mixers: From Microfabricated to Self-Assembled Devices," 2004, Philos. Trans. R. Soc. London, Ser. A, Vol. 362, pp. 1069-1086. https://doi.org/10.1098/rsta.2003.1363
  7. Kim, H., Doh, J., Irvine, D. J., Cohen, R. E. and Hammond, P. T., 2004, "Large Area Two-Dimensional B Cell Arrays for Sensing and Cell-Sorting Applications," Biomacromolecules, Vol. 5, pp. 822-827. https://doi.org/10.1021/bm034341r
  8. Pregibon, D. C., Toner, M. and Doyle, P. S., 2006, "Magnetically and Biologically Active Bead-Patterned Hydrogels," Langmuir, Vol. 22, pp. 5122-5128. https://doi.org/10.1021/la0534625