DOI QR코드

DOI QR Code

12wt% Co 담지 FT 촉매 제조시 유기용매가 촉매활성에 미치는 영향연구

The Effect of Organic Solvents on the Activity for the Synthesis of 12wt% Co-based FT Catalyst

  • 이지윤 (테라믹스 연구개발부) ;
  • 한자령 (한국가스공사 연구개발원) ;
  • 정종태 (한국가스공사 연구개발원) ;
  • 백영순 (수원대학교 환경에너지공학과)
  • 투고 : 2015.07.31
  • 심사 : 2015.08.30
  • 발행 : 2015.08.30

초록

The synthesis of Fischer-Tropsch (FT) oil is the catalytic hydrogenation of CO to give a range of products, which can be used for the production of high-quality diesel fuel, gasoline and linear chemicals. This studied catalyst was prepared Cobalt-supported alumina and silica by the incipient wet impregnation of the nitrates of cobalt, promoter and organic solvent with supports. Cobalt catalysts were calcined at $350^{\circ}C$ before being loaded into the FT reactors. After the reduction of catalyst has been carried out under $450^{\circ}C$ for 24h, FT reaction of the catalyst has been carried out at GHSV of 4,000/hr under $200^{\circ}C$ and 20atm. From these experimental results, we have obtained the results as following; In case of $SiO_2$ catalysts, the activity of 12wt% $Cobalt-SiO_2$ synthesized by organic solvent was about 2 or 3 times higher than the activity of 12wt% $Cobalt-SiO_2$ catalyst synthesized without organic solvent. In particular, the activity of the $Cobalt-SiO_2$ catalyst prepared in the presence of an organic solvent P was two to three times higher than that of the $Cobalt-SiO_2$ catalyst prepared without the organic solvent. Effect of Cr and Cu metal as a promoter was found little. 200 h long-term activity test was performed with a $Co/SiO_2$ catalyst prepared in the presence of an organic solvent of Glyoxal solution.

키워드

참고문헌

  1. M. E. Dry, "Ractical and Theoretical Aspects of the Catalytic Fischer-Tropsch Process," Appl. Catal. A-Gen., 1996, Vol. 138, pp. 319-344. https://doi.org/10.1016/0926-860X(95)00306-1
  2. T. W. Patzek, and G. D. Croft, "Otential for Coalto-liquids Conversion in the United States: Fischer-Tropsch Synthesis," Nat. Resour. Res., 2009, Vol 18, pp. 181-191. https://doi.org/10.1007/s11053-009-9098-9
  3. B. H. Davis, "Fischer-Tropsch synthesis: Overview of Reactor Development and Future Potentialities," Topics in Catalysis, 2005, Vol. 32, pp. 143-168. https://doi.org/10.1007/s11244-005-2886-5
  4. B. H. Davis, "Fischer-Tropsch synthesis: Reaction Mechanisms for Iron Catalysts," Catal. Today, 2009, Vol. 141, pp. 25-33. https://doi.org/10.1016/j.cattod.2008.03.005
  5. G. Bian, A. Oonuki, N. Koizumi, H. Nomoto, and M. Yamada, "Tudies with a Precipitated Iron Fischer-Tropsch Catalyst Reduced by $H_2$ or CO," J. Mol. Catal. A-Chem., 2002, Vol. 186, pp. 203-213. https://doi.org/10.1016/S1381-1169(02)00186-3
  6. T. V. Reshetenko, L. B. Avdeeva, A. A. Khassin, G. N. Kustova, V. A. Ushakov, E. M. Moroz, A. N. Shmakov, V. V. Kriventsov, D. I. Kochubey, Yu. T. Pavlyukhin, A. L. Chuvilin, Z. R. Ismagilov, Appl. Catal. A: Gen., 2004, Vol. 268, p. 127. https://doi.org/10.1016/j.apcata.2004.03.045
  7. V. A. de la Pena O'Shea, N. N. Menendez, J. D. Tornero, J. L. G. Fierro Catal. Lett., 88(2003), p. 123. https://doi.org/10.1023/A:1024097319352
  8. D. J. Duvenhage, N. J. Coville, Appl. Catal. A: Gen., 1997, Vol. 153, p. 43. https://doi.org/10.1016/S0926-860X(96)00326-2
  9. D. Banerjee, D. K. Chakrabarthy, Ind. J. Technol., 1992, Vol. 30, p. 81.
  10. H. Arai, K. Mitsuishi, T. Seiyama, Chem. Lett. 1984, p. 1291.
  11. I. Puskas, T. H. Fleisch, J. A. Kaduk, C. L. Marshall, B. L. Meyers, M. J. Castagnola, J. E. Indacochea, Applied Catalysis A: General, 2007, Vol. 316, Issue 2, pp. 197-206. https://doi.org/10.1016/j.apcata.2006.09.029
  12. C. J. Kim, US Patent 0,355,216 (1993).
  13. Snejana Bakardjieva, Jan Subrt, Vaclav Stengl, Maria Jesus Dianez, Maria Jesus Sayagues, Applied Catalysis B: Environmental, 2005, Vol. 58, Issues 3-4, pp. 193-202. https://doi.org/10.1016/j.apcatb.2004.06.019