DOI QR코드

DOI QR Code

Mathematical Simulation on Thermal Performance of Packed Bed Solar Energy Storage System

Packed Bed 태양에너지 저장시스템의 열성능에 관한 수학적 시뮬레이션

  • KUMAR, ANIL (School of Mechanical Engineering, Kyungpook National University) ;
  • KIM, MAN-HOE (School of Mechanical Engineering, Kyungpook National University)
  • Received : 2015.07.20
  • Accepted : 2015.08.30
  • Published : 2015.08.30

Abstract

Solar air heaters (SAHs) are simple in design and widely used for solar energy collection devices, and a packed bed is one of typical solar energy storage systems of thermal energy captured by SAHs. This paper presents mathematical modeling and simulation on the thermal performance of various packed bed energy storage systems. A MATLAB program is used to estimate the thermal efficiency of packed bed SAH. Among the various packed bed energy storage systems considered, the wire mesh screen packed bed SAH shows the best thermal efficiency over the entire range of design conditions. The maximum of thermal efficiency of packed bed SAH with wire mesh screen matrices has been found to be 0.794 for Re=2000 - 20000 and ${\Delta}T/I=0.002-0.02$.

Keywords

References

  1. A. Kumar, and M. H. Kim, Numerical optimization of solar air heaters having different types of roughness shapes on the heated plate - Technical note, Energy, Vol. 72, pp. 731-738, 2014. https://doi.org/10.1016/j.energy.2014.05.100
  2. A. Kumar, and M. H. Kim, Convective heat transfer enhancement in solar air channels, Applied Thermal Engineering, Vol. 89, pp. 239-261, 2015. https://doi.org/10.1016/j.applthermaleng.2015.06.015
  3. A. Kumar, and M. H. Kim, Effect of roughness width ratios in discrete multi V-rib with staggered rib roughness on overall thermal performance of solar air channel, Solar Energy, Vol. 119, pp. 399-414, 2015. https://doi.org/10.1016/j.solener.2015.06.030
  4. A. Kumar, R. P. Saini, and J. S. Saini, Heat and fluid flow characteristics of roughened solar air channel-A review, Renewable Energy, Vol. 47, pp. 77-94, 2012. https://doi.org/10.1016/j.renene.2012.04.001
  5. A. Kumar, R. P. Saini, and J. S. Saini, A review of thermohydraulic performance of artificially roughened solar air channels. Renewable and Sustainable Energy Reviews, Vol. 37, pp. 100-122, 2014. https://doi.org/10.1016/j.rser.2014.04.063
  6. L. Varshney, and J. S. Saini, Heat transfer and friction factor correlations for rectangular solar air heater duct packed with wire mesh screen matrices. Solar Energy, Vol. 62, pp. 255-262, 1998. https://doi.org/10.1016/S0038-092X(98)00017-6
  7. N. S. Thakur, J. S. Saini, and S. C. Solanki, Heat transfer and friction factor correlations for packed bed solar air heater for a low porosity system. Solar Energy, Vol. 74, pp. 319-329, 2003. https://doi.org/10.1016/S0038-092X(03)00153-1
  8. R. Singh, R. P. Saini, and J. S. Saini, Nusselt number and friction factor correlations for packed bed solar energy storage system having large sized elements of different shapes. Solar Energy, Vol. 80, pp. 760-771, 2006. https://doi.org/10.1016/j.solener.2005.07.001
  9. H. Torab, and D. E. Beasley, Optimization of a packed bed thermal energy storage unit. Journal of Solar Energy Engineering, Vol. 109, pp. 170-175, 1987. https://doi.org/10.1115/1.3268201
  10. P. Dhiman, N. S. Thakur, and S. R. Chauhan, Thermal and thermohydraulic performance of counter and parallel flow packed bed solar air heaters. Renewable Energy, Vol. 46, pp. 259-268, 2012. https://doi.org/10.1016/j.renene.2012.03.032
  11. S. Bouadila, S. Kooli, M. Lazaar, S. Skouri, and S. Farhat, Performance of a new solar air heater with packed-bed latent storage energy for nocturnal use. Applied Energy, Vol. 110, pp. 267-275, 2013. https://doi.org/10.1016/j.apenergy.2013.04.062
  12. S. Harmeet, R. P. Saini, and J. S. Saini, Performance of a packed bed solar energy storage system having large sized elements with low void fraction, Solar Energy, 87, pp. 22-34, 2013. https://doi.org/10.1016/j.solener.2012.10.004
  13. Ahmad, J. S. Saini, and H. K. Verma, Thermohydraulic performance of packed bed solar air heater. Energy Conversion and Management, Vol. 37, pp. 205-214, 1996. https://doi.org/10.1016/0196-8904(95)00164-9
  14. S. M. Shalaby, and M. A. Bek, 2014, Experimental investigation of a novel indirect solar dryer implementing PCM as energy storage medium. Energy Conversion and Management, Vol. 83, pp. 1-8, 2014. https://doi.org/10.1016/j.enconman.2014.03.043
  15. S. Singh, and P. Dhiman, Using an analytical approach to investigate thermal performance of double-flow packed-bed solar air heaters with external recycle. Journal of Energy Engineering, Vol. 56, pp. 45-57, 2014
  16. A. Saxena, G. Srivasatava, and V. Tirth, Design and thermal performance evaluation of a novel solar air heater. Renewable Energy, Vol. 77, pp. 501-511, 2015. https://doi.org/10.1016/j.renene.2014.12.041
  17. P. Dhiman, S. Singh, Recyclic double pass packed bed solar air heaters. International Journal of Thermal Science, Vol. 87, pp. 215-227, 2015. https://doi.org/10.1016/j.ijthermalsci.2014.08.017
  18. R. Maithani, A. K. Patil, and J. S. Saini, Investigation of effect of stratification on the thermal performance of packed bed solar air heater, International journal of energy science, Vol. 3, pp. 267-275, 2013.

Cited by

  1. Experimental study of heat transfer enhancement in a rectangular duct distributed by multi V-perforated baffle of different relative baffle width vol.53, pp.4, 2017, https://doi.org/10.1007/s00231-016-1901-7
  2. Investigation of thermal and hydrodynamic performance of impingement jets solar air passage with protrusion with combination arc obstacle on the heated plate pp.1521-0480, 2018, https://doi.org/10.1080/08916152.2017.1405102
  3. Convective heat transfer enhancement techniques of heat exchanger tubes: a review pp.2162-8246, 2018, https://doi.org/10.1080/01430750.2017.1324816
  4. Experimental investigation of heat transfer and fluid flow behaviour in multiple square perforated twisted tape with square wing inserts heat exchanger tube vol.54, pp.6, 2018, https://doi.org/10.1007/s00231-018-2290-x