DOI QR코드

DOI QR Code

Comparison of Antioxidant Activities of Water Extract from Dandelion (Taraxacum officinale) Aerial Parts, Roots, and Their Mixtures

서양민들레(Taraxacum officinale) 지상부, 지하부 및 혼합 추출물의 항산화 활성 비교

  • 정현정 ((재)전남생물산업진흥원 식품산업연구센터) ;
  • 성혜미 ((재)전남생물산업진흥원 식품산업연구센터) ;
  • 김경미 ((재)전남생물산업진흥원 식품산업연구센터) ;
  • 신유림 ((주)바이오푸드스토리) ;
  • 위지향 ((재)전남생물산업진흥원 식품산업연구센터)
  • Received : 2015.04.20
  • Accepted : 2015.07.02
  • Published : 2015.08.31

Abstract

The present investigation evaluated the antioxidant activities of water extracts from dandelion (Taraxacum officinale) aerial parts, roots, and mixed extracts. Mixed extract of T. officinale was a mixture of aerial parts and roots at 9:1 and 8:2 weight ratios. Extracts from aerial parts (DAE), roots (DRE), and mixture of aerial parts and roots (DME) were measured for cell viability and catalase activity in HepG2 cells, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, and lipid peroxidation inhibitory activity. Cell viabilities of HepG2 cells treated with DAE, DRE, DME 8:2, and DME 9:1 against $H_2O_2$-induced oxidative damage were 63.4%, 54.6%, 76.7% and 83.4% at a concentration of $400{\mu}g/mL$, respectively. Catalase activity was highest in DME 9:1 (12.2 mU/min/mg protein) compared with DAE (9.0 mU/min/mg protein) and DRE (9.7 mU/min/mg protein). DPPH radical scavenging activity of DME showed a significantly lower $EC_{50}$ value than DAE ($EC_{50}$ value of DME $9:1=163.3{\mu}g/mL$, DME $8:2=172.4{\mu}g/mL$, and $DAE=173.7{\mu}g/mL$). Lipid peroxidation inhibitory activity of DME showed a significantly lower $EC_{50}$ value than DAE [$EC_{50}$ values of DME $(9:1)=454.4{\mu}g/mL$, DME $(8:2)=426.6{\mu}g/mL$, and $DAE=654.7{\mu}g/mL$]. The results indicate that a small amount of T. officinale roots increased antioxidant activity of aerial parts. Especially, a 9:1 mixture was more valuable than 8:2 mixture for industry.

본 연구는 민들레 지상부와 지하부의 혼합 추출에 따라 항산화 활성에 상승 효과가 있는지 확인하기 위해 민들레 지상부와 지하부를 9:1 또는 8:2 중량 비로 혼합한 혼합 추출분말과 지상부, 지하부 단독 추출분말의 생리활성 성분을 분석하고 항산화 활성을 비교하였다. 민들레의 대표적인 성분으로 알려진 luteolin, chicoric acid를 분석한 결과 지상부의 함량이 지하부보다 월등히 높았으며 혼합 추출분말의 함량은 지상부보다 낮고 지하부보다 높았다. HepG2 cell에서의 산화적 스트레스 방어 효과 및 CAT 활성을 확인하여 효소적 항산화 시스템에 대한 영향을 평가한 결과 민들레 지상부와 지하부 간에 CAT 활성의 차이는 없었으나 혼합 추출분말의 활성이 현저히 증가하여 혼합 추출을 통한 상호작용이 영향을 미쳤을 것으로 보였다. DPPH 라디칼 소거활성 및 지질과 산화 억제에 대한 $EC_{50}$ 분석 결과에서도 지상부보다 혼합 추출분말의 항산화능이 유의적으로 높은 것으로 나타났다. 항산화능 평가 항목에 따라 8:2 혼합과 9:1 혼합의 활성에 차이가 있었는데 DPPH 라디칼 소거활성에서는 9:1 혼합의 $EC_{50}$이 더 낮고 지질과산화 억제 활성에서는 8:2 혼합의 $EC_{50}$이 더 낮았다. 이와 같이 민들레 지상부와 지하부를 혼합하여 추출할 때 지상부, 지하부 단독 추출물보다 항산화 활성이 상승한 것은 청미래 덩굴잎 열수추출물과 토복령 열 수추출물을 혼합하였을 때 EDA 및 FRAP와 같은 항산화 활성이 높아진다는 연구 및 로스팅 커피와 홍삼 혼합 추출물의 항산화 효과 평가에서 커피와 홍삼의 함량 조절을 통해 항산화력을 변화시킬 수 있다는 연구에서 2개 이상의 식품 또는 천연물을 혼합할 때 항산화 활성에 상승효과를 나타낸다는 결과와 유사한 것으로서 민들레 지상부와 지하부에 함유된 각기 다른 화합물들의 상호 작용으로 인해 항산화 활성이 상승한 것으로 보였다. 그러나 혼합 추출을 통한 생리활성 물질의 변화 및 상호 작용에 대해서는 추가적인 연구를 통해 확인이 필요하겠다. 본 연구는 기존의 민들레 전초 또는 각 부위별 항산화능을 평가한 연구와는 달리 민들레 지상부와 지하부를 9:1 또는 8:2로 혼합한 추출분말이 단독 추출 분말보다 항산화 활성이 높은 것을 확인함으로써 지상부, 지하부의 혼합을 통해 항산화 활성에 시너지 효과가 있는 것을 확인하였다. 지질과산화 억제 활성, HepG2 cell에서의 산화적 스트레스 방어 효과 및 catalase 활성에서 지상부와 지하부 혼합 비율에 따른 유의적인 차이 없이 모두 지상부보다 높은 활성을 보였고 DPPH 라디칼 소거활성과 같은 총 항산화능 평가에서는 8:2 혼합보다 9:1 혼합 추출분말의 활성이 유의적으로 높으며 수율도 9:1 혼합 추출분말이 8:2 혼합보다 약 1.5배 가량 높게 나타나 9:1 혼합 추출분말이 상업적인 항산화 활성 소재로써의 가치가 더 높을 것으로 기대된다.

Keywords

References

  1. Paz-Elizur T, Sevilya Z, Leitner-Dagan Y, Elinger D, Roisman LC, Livneh Z. 2008. DNA repair of oxidative DNA damage in human carcinogenesis: potential application for cancer risk assesment and prevention. Cancer Lett 266: 60-72. https://doi.org/10.1016/j.canlet.2008.02.032
  2. Preedy VR, Reilly ME, Mantle D, Peters TJ. 1998. Oxidative damage in liver disease. J Int Fed Clin Chem 10: 16-20.
  3. Liu J, Mori A. 2006. Oxidative damage hypothesis of stressassociated aging acceleration: neuroprotective effects of natural and nutritional antioxidants. Res Commun Biol Psychol Psychiat Neurosci 31: 103-119.
  4. Mukherjee AB, Zang Z, Chilton BS. 2007. Uteroglobin: a steroid-inducible immunomodulator protein that founded the Secretoglobin superfamily. Endocr Rev 28: 707-725. https://doi.org/10.1210/er.2007-0018
  5. Antioxidant. http://en.wikipedia.org/wiki/Antioxidant (accessed Apr 2015).
  6. Huang D, Boxin OU, Prior RL. 2005. The chemistry behind antioxidant capacity assays. J Agric Food Chem 53: 1841-1856. https://doi.org/10.1021/jf030723c
  7. Lee SI, Lee YK, Kim SD, Shim SM, Yang SH, Cheng J, Suh JW. 2014. Enhanced anti-oxidant activity effects of Smilax china L. Rhizome water extracts added with its fermented leaf water extracts. J Appl Biol Chem 57: 145-152. https://doi.org/10.3839/jabc.2014.022
  8. Choi YH, Kim SE, Huh J, Han YH, Lee MJ. 2012. Antibacterial and antioxidative activity of roasted coffee and red ginseng mixture extracts. J Korean Soc Food Sci Nutr 41:320-326. https://doi.org/10.3746/jkfn.2012.41.3.320
  9. Kim JW, Kim SD, Youn KS. 2011. Antioxidant activity of Hwangki and Beni-Koji extracts and mixture. J Korean Soc Food Sci Nutr 40: 1-6. https://doi.org/10.3746/jkfn.2011.40.1.001
  10. Cho HS, Kang SW, Kim JH, Choi MJ, Yu HW, Park E, Chun HS. 2014. Antioxidant and antimicrobial activities of combined extracts of Galla rhois, Achyranthes japonica Nakai, Terminalia chebula Retz and Glycyrrhiza uralensis. KSBB Journal 29: 29-35. https://doi.org/10.7841/ksbbj.2014.29.1.29
  11. Park JA, Jin KS, Lee JY, Kwon HJ, Kim BW. 2013. Antioxidative and anti-obesity activities of Tetrapanax papyriferus and Siegesbeckia pubescens extracts and their synergistic anti-obesity effects. Korean J Microbiol Biotechnol 41: 341-349. https://doi.org/10.4014/kjmb.1306.06002
  12. Kim TJ. 1994. Our flower, 100 species. 9th ed. Hyunansa, Seoul, Korea. p 2-5.
  13. Bisset NG, Wichtl M. 1994. Herbal drugs and phytopharmaceuticals: A handbook for practice on a scientific basis. CRC Press, Boca Raton, FL, USA. p 486-489.
  14. Gonzalez-Castejon M, Visioli F, Rodriguez-Casado A. 2012. Diverse biological activities of dandelion. Nutr Rev 70: 534-547. https://doi.org/10.1111/j.1753-4887.2012.00509.x
  15. Chon SU, Bae CH, Lee SC. 2012. Antioxidant and cytotoxic potentials of methanol extracts from Taraxacum officinale F.H. Wigg. at different plant parts. Korean J Plant Res 25:232-239. https://doi.org/10.7732/kjpr.2012.25.2.232
  16. Ho C, Choi EJ, Yoo GS, Kim KM, Ryu SY. 1998. Desacetylmatricarin, an anti-allergenic component from Taraxacum platycarpum. Plant Med 64: 577-578. https://doi.org/10.1055/s-2006-957520
  17. Takasaki M, Konoshima T, Tokuda H, Masuda K, Arai Y, Shiojima K, Ageta H. 1999. Anti-carcinogenic activity of Taraxacum plant. I. Biol Pharm Bull 22: 602-605. https://doi.org/10.1248/bpb.22.602
  18. Williams CA, Goldstone F, Greenham J. 1996. Flavonoids, cinnamic acids and coumarins from the different tissues and medicinal preparations of Taraxacum officinale. Phytochemistry 42: 121-127. https://doi.org/10.1016/0031-9422(95)00865-9
  19. Koo HN, Hong SH, Song BK, Kim CH, Yoo YH, Kim HM. 2004. Taraxacum officinale induces cytotoxicity through TNF-${\alpha}$ and IL-1${\alpha}$ secretion in Hep G2 cells. Life Sci 74:1149-1157. https://doi.org/10.1016/j.lfs.2003.07.030
  20. Schütz K, Carle R, Schieber A. 2006. Taraxacum-a review on its phytochemical and pharmacological profile. J Ethnopharmacol 107: 313-323. https://doi.org/10.1016/j.jep.2006.07.021
  21. Harris GK, Qjan Y, Leonard SS, Sbarra DC, Shi X. 2006. Luteolin and chrysin differentially inhibit cyclooxygenase-2 expression and scavenge reactive oxygen species but similarly inhibit prostaglandin-E2 formation in RAW 264.7 cells. J Nutr 136: 1517-1521.
  22. Dalby-Brown L, Barsett H, Landbo AK, Meyer AS, Molgaard P. 2005. Synergitic antioxidative effects of alkamides, caffeic acid derivatives, and polysaccharide fractions from Echinacea purpurea on in vitro oxidation of human lowdensity lipoproteins. J Agric Food Chem 53: 9413-9423. https://doi.org/10.1021/jf0502395
  23. Park CM, Jin KS, Lee YW, Song YS. 2011. Luteolin and chicoric acid synergistically inhibited inflammatory responses via inactivation of PI3K-Akt pathway and impairment of NF-${\kappa}B$ translocation in LPS stimulated RAW 264.7 cells. Eur J Pharmacol 660: 454-459. https://doi.org/10.1016/j.ejphar.2011.04.007
  24. Park SH. 1995. Naturalized plant flora in Korea. Iljogak, Seoul, Korea. p 346-349.
  25. KFDA. Food material information. http://fse.foodnara.go.kr/ origin/search_data_list.jsp (accessed May 2015).
  26. Lee SH, Park HJ, Kim YI, Rhie SG. 2004. Comparison of the antioxidative and antimicrobial activity of different varieties and parts of dandelions. Korean J Community Living Science 15: 101-107.
  27. Lim YM, Kim BR, Hong GY. 2008. Antioxidant effect of Crataegi Fructus extract on the oxidative stress of reactive oxygen species in cultured human skin fibrobalsts. Korean J Oriental Physiology & Pathology 22: 115-119.
  28. Tome ME, Baker AF, Powis G, Payne CM, Briehl MM. 2001. Catalase-overexpressing thymocytes are resistant to glucocorticoid-induced apoptosis and exhibit increased net tumor growth. Cancer Res 61: 2766-2773.
  29. Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  30. Lin MY, Chang FJ. 2000. Antioxidative effect of intestinal bacteria Bifidobacterium longum ATCC 15708 and Lactobacillus acidophilus ATCC 4356. Dig Sci 45: 1617-1622. https://doi.org/10.1023/A:1005577330695
  31. Han EK, Lee JY, Jung EJ, Jin YX, Chung CK. 2010. Antioxidative activities of water extracts from different parts of Taraxacum officinale. J Korean Soc Food Sci Nutr 39:1580-1586. https://doi.org/10.3746/jkfn.2010.39.11.1580
  32. Kang MJ, Seo YH, Kim JB, Shin SR, Kim KS. 2000. The chemical composition of Taraxacum officinale consumed in Korea. Korean J Soc Food Sci 16: 182-187.
  33. Chon SU, Kang JG. 2013. Phenolics level and antioxidant activity of methanol extracts from different plant parts in Youngia sonchifolia. Korean J Crop Sci 58: 20-27. https://doi.org/10.7740/kjcs.2013.58.1.020
  34. Hong S, Seo WS, Jung HK, Kang SM. 2005. Protecting effects by rooibos tea against immobilization stress-induced cellular damage in rat. Korean J Food Sci Technol 30: 1222-1228.
  35. Kang DG, Yun CK, Lee HS. 2003. Screening and comparison of antioxidant activity of solvent extracts of herbal medicines used in Korea. J Ethnopharmacol 87: 231-236. https://doi.org/10.1016/S0378-8741(03)00142-9
  36. Kim MJ, Cho SY. 2002. Effects of dandelion on oxygen free radical generating and scavenging system of brain in streptozotocin-induced diabetic rats. J Korean Soc Food Sci Nutr 31: 500-505. https://doi.org/10.3746/jkfn.2002.31.3.500
  37. Moon JK, Shibamoto T. 2009. Antioxidant assays for plant and food components. J Agric Food Chem 57: 1655-1666. https://doi.org/10.1021/jf803537k
  38. Kang MJ, Shin SR, Kim KS. 2002. Antioxidative and free radical scavenging activity of water extract from dandelion (Taraxacum officinale). Korean J Food Preserv 9: 253-259.
  39. Lim AK, Kim JO, Jung MJ, Jung HK, Hong JH, Kim DI. 2008. Functional biological activity of hot water and ethanol extracts from Taraxaci Herba. J Korean Soc Food Sci Nutr 37: 1231-1237. https://doi.org/10.3746/jkfn.2008.37.10.1231
  40. Neff WE, Frankel EN. 1984. Photosensitized oxidation of methyl linolenate monohydroperoxides: hydroperoxy cyclic peroxides, dihydroperoxides and hydroperoxy bis-cyclic peroxides. Lipids 19: 952-957. https://doi.org/10.1007/BF02534731
  41. Park JY, Park CM, Kim JJ, Song YS. 2008. Hepatoprotective activity of dandelion (Taraxacum officinale) water extract against D-galactosamine-induced hepatitis in rats. J Korean Soc Food Sci Nutr 37: 177-183. https://doi.org/10.3746/jkfn.2008.37.2.177

Cited by

  1. Volatile Compound Analysis and Anti-oxidant and Anti-inflammatory Effects of Oenanthe javanica, Perilla frutescens, and Zanthoxylum piperitum Essential Oils vol.15, pp.3, 2017, https://doi.org/10.20402/ajbc.2016.0142
  2. Antioxidant and Anti-inflammatory Effects of Taraxacum hallaisanense Nakai Extracts vol.26, pp.3, 2018, https://doi.org/10.11625/KJOA.2018.26.3.501
  3. Botanical Formulation HX109 Ameliorates TP-Induced Benign Prostate Hyperplasia in Rat Model and Inhibits Androgen Receptor Signaling by Upregulating Ca 2+ /CaMKKβ and ATF3 in LNCaP Cel vol.10, pp.12, 2018, https://doi.org/10.3390/nu10121946