DOI QR코드

DOI QR Code

Effects of natural eggshell membrane (NEM) on monosodium iodoacetate-induced arthritis in rats

MIA 유도 골관절염 랫드에 Natural Eggshell Membrane (NEM)이 미치는 영향

  • Sim, Boo Yong (Traditional and Biomedical Research Center (TBRC-RIC), Daejeon University) ;
  • Bak, Ji Won (Traditional and Biomedical Research Center (TBRC-RIC), Daejeon University) ;
  • Lee, Hae Jin (Traditional and Biomedical Research Center (TBRC-RIC), Daejeon University) ;
  • Jun, Ji Ae (Traditional and Biomedical Research Center (TBRC-RIC), Daejeon University) ;
  • Choi, Hak Joo (Traditional and Biomedical Research Center (TBRC-RIC), Daejeon University) ;
  • Kwon, Chang Ju (Ju Yeong NS Co., Ltd.) ;
  • Kim, Hwa Young (Ju Yeong NS Co., Ltd.) ;
  • Ruff, Kevin J. (Scientific & Regulatory Affairs, ESM Technologies, LLC) ;
  • Brandt, Karsten (Human Nutrition, Stratum Nutrition) ;
  • Kim, Dong Hee (Traditional and Biomedical Research Center (TBRC-RIC), Daejeon University)
  • Received : 2015.05.07
  • Accepted : 2015.06.29
  • Published : 2015.08.31

Abstract

Purpose: The aim of this study is to investigate anti-arthritis activity using natural eggshell membrane (NEM). Methods: NEM was administered at 52 mg/kg, 200 mg/kg, and 400 mg/kg to SD-Rat, where arthritis was induced by monosodium iodoacetate (MIA) at 3 mg. NO production in serum was measured using Griess reagent. Cytokines including IL-$1{\beta}$, and IL-6 were measured by Luminex and $PGE_2$, MMP-2, MMP-9, TIMP-1, $LTB_4$, and hs-CRP were measured by ELISA. The cartilage of patella volume was examined and 3-D high-resolution reconstructions of the cartilage of patella were obtained using a Micro-CT system. Results: Production of NO, IL-$1{\beta}$, IL-6, $PGE_2$, MMP-2, MMP-9, TIMP-1, $LTB_4$, and hs-CRP in serum was decreased, respectively, in comparison with control. The cartilage of patella volume increased significantly. In addition, the NEM group showed a decrease in the cartilage of patella, synovial membrane, and transformation of fibrous tissue. Conclusion: The results for NEM showed significant anti-arthritis activity. These results may be developed as a raw material for new health food to ease the symptoms mentioned above.

본 연구는 난각막 추출물 (NEM)이 골관절염 동물 모델에서 골관절염 유발 인자에 대한 예방과 개선에 미치는 영향을 조사하고자 실시하였다. 실험동물인 6주령의 랫드에 NEM을 골관절염 유발 2주전부터 농도별 (52 mg/kg, 200 mg/kg, 400 mg/kg)로 경구 투여하였으며, 2주간의 경구 투여 실시 후 정상군 (normal)을 제외한 대조군과 NEM 경구 투여군에게 3.0 mg/mL의 농도로 MIA를 주사하여 골관절염을 유발하였다. 골관절염 유발 후 4주간 경구 투여를 지속적으로 실시한 후 혈액 및 관절, 조직 등을 이용하여 골관절염 유발 인자들을 확인하였다. NO 생성량은 NEM 200, 400 (mg/kg)에서 유의성 있는 감소를 나타내었으며, $PGE_2$ 생성량은 모든 농도에서 유의성 있는 감소를 나타내었다. 사이토카인 IL-$1{\beta}$와 IL-6 생성량은 IL-$1{\beta}$에서는 모든 농도에서 유의성 있는 감소를 보였으나, IL-6에서는 400 mg/kg 농도에서만이 유의성 있는 감소를 나타내었다. hs-CRP 생성량은 모든 농도에서 대조군에 비하여 유의성 있는 감소를 나타내었으며, MMPs 생성량과 $LTB_4$ 생성량을 모든 농도에서 유의성 있는 감소를 나타내었다. 또한, COMP 및 CTX-II 검사를 통해 골관절염의 진행 억제에 유의성 있는 감소를 나타내었다. 마지막으로 관절과 연골을 micro-CT 및 조직 염색을 실시한 결과, NEM 경구 투여군은 연골량 및 관절 조직의 변형, 연골세포의 손상도가 대조군에 비하여 손상이 적었음을 확인할 수 있었다. 이상의 결과로 미루어 볼 때, NEM은 농도 의존적으로 골관절염 유발 인자를 감소시켜 관절 및 연골에 효능이 있음을 제시하고 있다. 이와 같은 결과는 NEM이 골관절염에 대한 예방과 개선 효과를 나타낼 수 있는 건강기능식품의 원료로 활용될 수 있을 것이라 사료된다.

Keywords

References

  1. Korean College of Rheumatology. KCR textbook of rheumatology. Seoul: Koonja; 2014.
  2. The Society of Korean Medicine Rehabilitation. Oriental rehabilitation medicine, 2nd revision. Seoul: Koonja; 2005.
  3. Yoo MC. The latest trend in treating arthritis. J Rheumatol Health 1995; 2(2): 227-229.
  4. Auw Yang KG, Saris DB, Dhert WJ, Verbout AJ. Osteoarthritis of the knee: current treatment options and future directions. Curr Orthop 2004; 18(4): 311-320. https://doi.org/10.1016/j.cuor.2004.04.005
  5. Yang CH. Gastrointestinal disorders associated with non-steroidal anti-inflammatory drugs (NSAIDs). Dongguk J Med 2003; 10(2): 190-199.
  6. Han JD, Shin JH, Hwang HC, Kim DY, Cho WH, Im GI. Interaction of cytokines in osteolysis. J Korean Orthop Res Soc 2000; 3(2): 125-132.
  7. Lee JW, Do JH. Market trend of health functional food and the prospect of ginseng market. J Ginseng Res 2005; 29(4): 206-214. https://doi.org/10.5142/JGR.2005.29.4.206
  8. Kim HK. Current status and prospect of nutraceuticals. Food Ind Nutr 2004; 9(1): 1-14.
  9. Leach RM Jr, Rucker RB, Van Dyke GP. Egg shell membrane protein: a nonelastin desmosine/isodesmosine-containing protein. Arch Biochem Biophys 1981; 207(2): 353-359. https://doi.org/10.1016/0003-9861(81)90042-4
  10. Okubo T, Akachi S, Hatta H. Structure of hen eggs and physiology of egg laying. In: Yamamoto T, Juneja LR, Hatta H, Kim M, editors. Hen Eggs: Their Basic and Applied Science. Boca Raton (FL): CRC Press; 1997. p.1-12.
  11. Jeon TW, Park KM. Functional properties of egg shell membrane hydrolysate as a food material. J Korean Soc Food Sci Anim Resour 2002; 22(3): 267-273.
  12. Ruff KJ, DeVore DP. Reduction of pro-inflammatory cytokines in rats following 7-day oral supplementation with a proprietary eggshell membrane-derived product. Mod Res Inflamm 2014; 3(1): 19-25. https://doi.org/10.4236/mri.2014.31003
  13. Ruff KJ, Winkler A, Jackson RW, DeVore DP, Ritz BW. Eggshell membrane in the treatment of pain and stiffness from osteoarthritis of the knee: a randomized, multicenter, double-blind, placebo-controlled clinical study. Clin Rheumatol 2009; 28(8): 907-914. https://doi.org/10.1007/s10067-009-1173-4
  14. Jung YO. Pathogenesis of osteoarthritis. Diagn Treat 2007; 27(4): 395-399.
  15. Kim CS, Park YK. The therapeutic effect of Achyranthis Radix on the collagen-induced arthritis in mice. Korean J Herbol 2010; 25(4): 129-135.
  16. Wu W, Xu X, Dai Y, Xia L. Therapeutic effect of the saponin fraction from Clematis chinensis Osbeck roots on osteoarthritis induced by monosodium iodoacetate through protecting articular cartilage. Phytother Res 2010; 24(4): 538-546. https://doi.org/10.1002/ptr.2977
  17. Wesche-Soldato DE, Swan RZ, Chung CS, Ayala A. The apoptotic pathway as a therapeutic target in sepsis. Curr Drug Targets 2007; 8(4): 493-500. https://doi.org/10.2174/138945007780362764
  18. Herrington C, Hall PA. Molecular and cellular themes in inflammation and immunology. J Pathol 2008; 214(2): 123-125. https://doi.org/10.1002/path.2303
  19. Campo GM, Avenoso A, Campo S, D'Ascola A, Traina P, Sama D, Calatroni A. Glycosaminoglycans modulate inflammation and apoptosis in LPS-treated chondrocytes. J Cell Biochem 2009; 106(1): 83-92. https://doi.org/10.1002/jcb.21981
  20. Clancy RM, Amin AR, Abramson SB. The role of nitric oxide in inflammation and immunity. Arthritis Rheum 1998; 41(7): 1141-1151. https://doi.org/10.1002/1529-0131(199807)41:7<1141::AID-ART2>3.0.CO;2-S
  21. Rice-Evance C, Miller N, Paganga G. Antioxidant properties of phenolic compounds. Trends Plant Sci 1997; 2(4): 152-159. https://doi.org/10.1016/S1360-1385(97)01018-2
  22. Chang ST, Wu JH, Wang SY, Kang PL, Yang NS, Shyur LF. Antioxidant activity of extracts from Acacia confusa bark and heartwood. J Agric Food Chem 2001; 49(7): 3420-3424. https://doi.org/10.1021/jf0100907
  23. Hardy MM, Seibert K, Manning PT, Currie MG, Woerner BM, Edwards D, Koki A, Tripp CS. Cyclooxygenase 2-dependent prostaglandin E2 modulates cartilage proteoglycan degradation in human osteoarthritis explants. Arthritis Rheum 2002; 46(7): 1789-1803. https://doi.org/10.1002/art.10356
  24. Okamoto H, Hoshi D, Kiire A, Yamanaka H, Kamatani N. Molecular targets of rheumatoid arthritis. Inflamm Allergy Drug Targets 2008; 7(1): 53-66. https://doi.org/10.2174/187152808784165199
  25. Scheinecker C, Redlich K, Smolen JS. Cytokines as therapeutic targets: advances and limitations. Immunity 2008; 28(4): 440-444. https://doi.org/10.1016/j.immuni.2008.03.005
  26. Ji JD. Cytokines in rheumatoid arthritis. Hanyang Med Rev 2005; 25(2): 43-52.
  27. Hulejova H, Baresova V, Klezl Z, Polanska M, Adam M, Senolt L. Increased level of cytokines and matrix metalloproteinases in osteoarthritic subchondral bone. Cytokine 2007; 38(3): 151-156. https://doi.org/10.1016/j.cyto.2007.06.001
  28. LeGrand A, Fermor B, Fink C, Pisetsky DS, Weinberg JB, Vail TP, Guilak F. Interleukin-1, tumor necrosis factor alpha, and interleukin-17 synergistically up-regulate nitric oxide and prostaglandin E2 production in explants of human osteoarthritic knee menisci. Arthritis Rheum 2001; 44(9): 2078-2083. https://doi.org/10.1002/1529-0131(200109)44:9<2078::AID-ART358>3.0.CO;2-J
  29. Tak MJ, Tak MR, Kang KH, Ko WS, Yoon HJ. The Inhibitory effects of Yang Geouk San Hwa-Tang on LPS-stimulated inflammation in RAW264.7 macrophage cells. J Korean Orient Med Ophthalmol Otolaryngol Dermatol 2010; 23(1): 118-134.
  30. Madson KL, Moore TL, Lawrence JM 3rd, Osborn TG. Cytokine levels in serum and synovial fluid of patients with juvenile rheumatoid arthritis. J Rheumatol 1994; 21(12): 2359-2363.
  31. Yeo HJ, Lee JH, Lee HJ, Byun KS, Im HJ, Kim MJ. Microvascular findings in patients with rheumatoid arthritis: assessed, using fundus photography and fluorescein angiography. J Rheum Dis 2013; 20(4): 231-237. https://doi.org/10.4078/jrd.2013.20.4.231
  32. Madhok R, Crilly A, Watson J, Capell HA. Serum interleukin 6 levels in rheumatoid arthritis: correlations with clinical and laboratory indices of disease activity. Ann Rheum Dis 1993; 52(3): 232-234. https://doi.org/10.1136/ard.52.3.232
  33. Reijman M, Hazes JM, Bierma-Zeinstra SM, Koes BW, Christgau S, Christiansen C, Uitterlinden AG, Pols HA. A new marker for osteoarthritis: cross-sectional and longitudinal approach. Arthritis Rheum 2004; 50(8): 2471-2478. https://doi.org/10.1002/art.20332
  34. Garnero P, Peterfy C, Zaim S, Schoenharting M. Bone marrow abnormalities on magnetic resonance imaging are associated with type II collagen degradation in knee osteoarthritis: a three-month longitudinal study. Arthritis Rheum 2005; 52(9): 2822-2829. https://doi.org/10.1002/art.21366
  35. Elsaid KA, Chichester CO. Review: collagen markers in early arthritic diseases. Clin Chim Acta 2006; 365(1-2): 68-77. https://doi.org/10.1016/j.cca.2005.09.020
  36. Bresnihan B. Pathogenesis of joint damage in rheumatoid arthritis. J Rheumatol 1999; 26(3): 717-719.
  37. Peters-Golden M, Henderson WR Jr. Leukotrienes. N Engl J Med 2007; 357(18): 1841-1854. https://doi.org/10.1056/NEJMra071371

Cited by

  1. Effect of Mulberry Extract Complex on Degenerative Arthritis In Vivo Models vol.45, pp.5, 2016, https://doi.org/10.3746/jkfn.2016.45.5.634
  2. Beneficial effects of natural eggshell membrane (NEM) on multiple indices of arthritis in collagen-induced arthritic rats vol.27, pp.5, 2017, https://doi.org/10.1080/14397595.2016.1259729
  3. 오계란(烏鷄卵)이 MIA 골관절염 병태 모델에 미치는 영향 vol.32, pp.6, 2015, https://doi.org/10.6116/kjh.2017.32.6.63
  4. 기혈소통환(氣血疏通丸)이 Monosodium iodoacetate로 골관절염(骨關節炎)을 유도(誘導)한 랫드에 미치는 영향(影響) vol.33, pp.3, 2015, https://doi.org/10.6116/kjh.2018.33.3.45
  5. Eggshell Membrane Ameliorates Hyperuricemia by Increasing Urate Excretion in Potassium Oxonate-Injected Rats vol.13, pp.10, 2015, https://doi.org/10.3390/nu13103323