DOI QR코드

DOI QR Code

Anti-Mycobacterial Activity of Tamoxifen Against Drug-Resistant and Intra-Macrophage Mycobacterium tuberculosis

  • Jang, Woong Sik (Regional Innovation Center, Soonchunhyang University) ;
  • Kim, Sukyung (Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University) ;
  • Podder, Biswajit (Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University) ;
  • Jyoti, Md. Anirban (Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University) ;
  • Nam, Kung-Woo (Departments of Life Science and Biotechnology) ;
  • Lee, Byung-Eui (Chemistry, Soonchunhyang University) ;
  • Song, Ho-Yeon (Regional Innovation Center, Soonchunhyang University)
  • Received : 2014.12.10
  • Accepted : 2015.01.22
  • Published : 2015.06.28

Abstract

Recently, it has become a struggle to treat tuberculosis with the current commercial antituberculosis drugs because of the increasing emergence of multidrug-resistant (MDR) tuberculosis and extensively drug-resistant (XDR) tuberculosis. We evaluated here the antimycobacterial activity of tamoxifen, known as a synthetic anti-estrogen, against eight drugsensitive or resistant strains of Mycobacterium tuberculosis (TB), and the active intracellular killing of tamoxifen on TB in macrophages. The results showed that tamoxifen had antituberculosis activity against drug-sensitive strains (MIC, 3.125-6.25 µg/ml) as well as drugresistant strains (MIC, 6.25 to 12.5 µg/ml). In addition, tamoxifen profoundly decreased the number of intracellular TB in macrophages in a dose-dependent manner.

Keywords

References

  1. Atroshi F, Rizzo A, Westermarck T, Ali-Vehmas T. 1998. Effects of tamoxifen, melatonin, coenzyme Q10, and L-carnitine supplementation on bacterial growth in the presence of mycotoxins. Pharmacol. Res. 38: 289-295. https://doi.org/10.1006/phrs.1998.0363
  2. Caleffi-Ferracioli KR, Maltempe FG, Siqueira VL, Cardoso RF. 2013. Fast detection of drug interaction in Mycobacterium tuberculosis by a checkerboard resazurin method. Tuberculosis (Edinb.) 93: 660-663. https://doi.org/10.1016/j.tube.2013.09.001
  3. Changsen C, Franzblau SG, Palittapongarnpim P. 2003. Improved green fluorescent protein reporter gene-based microplate screening for antituberculosis compounds by utilizing an acetamidase promoter. Antimicrob. Agents Chemother. 47: 3682-3687. https://doi.org/10.1128/AAC.47.12.3682-3687.2003
  4. Chen FC, Liao YC, Huang JM, Lin CH, Chen YY, Dou HY, Hsiung CA. 2014. Pros and cons of the tuberculosis drugome approach - an empirical analysis. PLoS One 9: e100829. https://doi.org/10.1371/journal.pone.0100829
  5. Christophe T, Jackson M, Jeon HK, Fenistein D, ContrerasDominguez M, Kim J, et al. 2009. High content screening identifies decaprenyl-phosphoribose 2’ epimerase as a target for intracellular antimycobacterial inhibitors. PLoS Pathog. 5: e1000645. https://doi.org/10.1371/journal.ppat.1000645
  6. Dolan K, Montgomery S, Buchheit B, Didone L, Wellington M, Krysan DJ. 2009. Antifungal activity of tamoxifen: in vitro and in vivo activities and mechanistic characterization. Antimicrob. Agents Chemother. 53: 3337-3346. https://doi.org/10.1128/AAC.01564-08
  7. El Arbi M, Théolier J, Pigeon P, Jellali K, Trigui F, Top S, et al. 2014. Antibacterial properties and mode of action of new triaryl butene citrate compounds. Eur. J. Med. Chem. 76: 408-413. https://doi.org/10.1016/j.ejmech.2014.02.037
  8. Jayachandran R, Scherr N, Pieters J. 2012. Elimination of intracellularly residing Mycobacterium tuberculosis through targeting of host and bacterial signaling mechanisms. Expert Rev. Anti Infect. Ther. 10: 1007-1022. https://doi.org/10.1586/eri.12.95
  9. Kaufmann SHE. 2001. How can immunology contribute to the control of tuberculosis? Nat. Rev. Immunol. 1: 20-30. https://doi.org/10.1038/35095558
  10. Luxo C, Jurado AS, Madeira VM, Silva MT. 2003. Tamoxifen induces ultrastructural alterations in membranes of Bacillus stearothermophilus. Toxicol. Vitol. 17: 623-628. https://doi.org/10.1016/S0887-2333(03)00113-9
  11. Luo X, Pires D, Ainsa JA, Gracia B, Mulhovo S, Duarte A, et al. 2011. Antimycobacterial evaluation and preliminary phytochemical investigation of selected medicinal plants traditionally used in Mozambique. J. Ethnopharmacol. 137: 114-120. https://doi.org/10.1016/j.jep.2011.04.062
  12. Miguel DC, Zauli-Nascimento RC, Yokoyama-Yasunaka JK, Katz S, Barbieri CL, Uliana SR. 2009. Tamoxifen as a potential antileishmanial agent: efficacy in the treatment of Leishmania braziliensis and Leishmania chagasi infections. J. Antimicrob. Chemother. 63: 365-368. https://doi.org/10.1093/jac/dkn509
  13. Naik SK, Mohanty S, Padhi A, Pati R, Sonawane A. 2014. Evaluation of antibacterial and cytotoxic activity of Artemisia nilagirica and Murraya koenigii leaf extracts against mycobacteria and macrophages. BMC Complement. Altern. Med. 14: 87. https://doi.org/10.1186/1472-6882-14-87
  14. Palomino JC, Martin A, Camacho M, Guerra H, Swings J, Portaels F. 2002. Resazurin microtiter assay plate: simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 46: 2720-2722. https://doi.org/10.1128/AAC.46.8.2720-2722.2002
  15. Pecora ND, Fulton SA, Reba SM, Drage MG, Simmons DP, Urankar-Nagy NJ, et al. 2009. Mycobacterium bovis BCG decreases MHC-II expression in vivo on murine lung macrophages and dendritic cells during aerosol infection. Cell Immunol. 254: 94-104. https://doi.org/10.1016/j.cellimm.2008.07.002
  16. Singh R, Hussain S, Verma R, Sharma P. 2013. Antimycobacterial screening of five Indian medicinal plants and partial purification of active extracts of Cassia sophera and Urtica dioica. Asian Pac. J. Trop. Med. 6: 366-371. https://doi.org/10.1016/S1995-7645(13)60040-1
  17. Vandal OH, Nathan CF, Ehrt S. 2009. Acid resistance in Mycobacterium tuberculosis. J. Bacteriol. 191: 4714-4721. https://doi.org/10.1128/JB.00305-09
  18. Vandal OH, Pierini LM, Schnappinger D, Nathan CF, Ehrt S. 2008. A membrane protein preserves intrabacterial pH in intraphagosomal Mycobacterium tuberculosis. Nat. Med. 14: 849-854. https://doi.org/10.1038/nm.1795

Cited by

  1. In Vitro Effect of DFC-2 on Mycolic Acid Biosynthesis in Mycobacterium tuberculosis vol.27, pp.11, 2015, https://doi.org/10.4014/jmb.1705.05013
  2. Thymoquinone (TQ) inhibits the replication of intracellular Mycobacterium tuberculosis in macrophages and modulates nitric oxide production vol.17, pp.None, 2015, https://doi.org/10.1186/s12906-017-1786-0
  3. Tamoxifen Never Ceases to Amaze: New Findings on Non-Estrogen Receptor Molecular Targets and Mediated Effects vol.36, pp.4, 2018, https://doi.org/10.1080/07357907.2018.1453933
  4. Optimized Background Regimen for Treatment of Active Tuberculosis with the Next-Generation Benzothiazinone Macozinone (PBTZ169) vol.62, pp.11, 2015, https://doi.org/10.1128/aac.00840-18
  5. Repurposing Estrogen Receptor Antagonists for the Treatment of Infectious Disease vol.9, pp.6, 2015, https://doi.org/10.1128/mbio.02272-18
  6. Evaluation of in silico designed inhibitors targeting MelF (Rv1936) against Mycobacterium marinum within macrophages vol.9, pp.None, 2019, https://doi.org/10.1038/s41598-019-46295-5
  7. Finding New Ways to Combat Multidrug-Resistant Tuberculosis vol.26, pp.1, 2015, https://doi.org/10.1089/mdr.2018.0353
  8. Selective Estrogen Receptor Modulators (SERMs): Mechanistic Insights Against Microbial Infections vol.20, pp.2, 2020, https://doi.org/10.2174/1566524019666191014112133
  9. Bazedoxifene Suppresses Intracellular Mycobacterium tuberculosis Growth by Enhancing Autophagy vol.5, pp.2, 2015, https://doi.org/10.1128/msphere.00124-20
  10. Nuclear Receptors as Autophagy-Based Antimicrobial Therapeutics vol.9, pp.9, 2015, https://doi.org/10.3390/cells9091979
  11. Selective estrogen receptor modulators against Gram-positive and Gram-negative bacteria: an experimental study vol.16, pp.13, 2015, https://doi.org/10.2217/fmb-2020-0310
  12. Activity of Lactobacillus crispatus isolated from vaginal microbiota against Mycobacterium tuberculosis vol.59, pp.11, 2021, https://doi.org/10.1007/s12275-021-1332-0
  13. ERα-independent NRF2-mediated immunoregulatory activity of tamoxifen vol.144, pp.None, 2015, https://doi.org/10.1016/j.biopha.2021.112274