References
- A. Ali, M. A. Iqbal, and S. T. Mohyud-Din, Hermite wavelets method for boundary value problems, Int. J. Mod. Appl. Phys. 3 (2013), no. 1, 38-47.
- A. Arikoglu and I. Ozkol, Solution of fractional differential equations by using differential transform method, Chaos Solitons Fractals 34 (2007), no. 5, 1473-1481. https://doi.org/10.1016/j.chaos.2006.09.004
- E. Babolian and F. Fattahzdeh, Numerical solution of differential equations by using Chebyshev wavelet operational matrix of integration, Appl. Math. Comput. 188 (2007), no. 1, 417-426. https://doi.org/10.1016/j.amc.2006.10.008
- R. E. Bellman, Functional equations in the theory of dynamic programming. II. Nonlinear differential equations, Proc. Natl. Acad. Sci. 41 (1955), 482-485. https://doi.org/10.1073/pnas.41.7.482
- R. E. Bellman, Functional equations in the theory of dynamic programming. V. Positivity and quasilinearity, Proc. Natl. Acad. Sci. 41 (1955), 743-746. https://doi.org/10.1073/pnas.41.10.743
- R. E. Bellman and R. E. Kalaba, Quasilinearization and nonlinear boundary-value problems, American Elsevier Publishing Company, 1965.
- C. Chen and C. Hsiao, Haar wavelet method for solving lumped and distributed-parameter systems, IEE P.-Contr. Theor. Appl. 144 (1997), 87-94. https://doi.org/10.1049/ip-cta:19970702
- I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math. 41 (1988), no. 7, 909-996. https://doi.org/10.1002/cpa.3160410705
- M. Dehghan and M. Lakestani, Numerical solution of nonlinear system of second-order boundary value problems using cubic B-spline scaling functions, Int. J. Comput. Math. 85 (2008), no. 9, 1455-1461. https://doi.org/10.1080/00207160701534763
- J. V. Devi, F. A. McRae, and Z. Drici, Generalized quasilinearization for fractional differential equations, Comput. Math. Appl. 59 (2010), no. 3, 1057-1062. https://doi.org/10.1016/j.camwa.2009.05.017
- J. V. Devi and C. Suseela, Quasilinearization for fractional differential equations, Commun. Appl. Anal. 12 (2008), no. 4, 407-418.
- K. T. Elgindy and K. A. Smith-Miles, Solving boundary value problems, integral, and integro-differential equations using Gegenbauer integration matrices, J. Comput. Appl. Math. 237 (2013), no. 1, 307-325. https://doi.org/10.1016/j.cam.2012.05.024
- A. E. M. El-Mesiry, A. M. A. El-Sayed, and H. A. A. El-Saka, Numerical methods for multi-term fractional (arbitrary) orders differential equations, Appl. Math. Comp. 160 (2005), no. 3, 683-699. https://doi.org/10.1016/j.amc.2003.11.026
- S. A. El-Wakil, A. Elhanbaly, and M. A. Abdou, Adomian decomposition method for solving fractional nonlinear differential equations, Appl. Math. Comput. 182 (2006), no. 1, 313-324. https://doi.org/10.1016/j.amc.2006.02.055
- N. Engheta, On fractional calculus and fractional multipoles in electromagnetism, IEEE T. Antenn. Propag. 44 (1996), no. 4, 554-566. https://doi.org/10.1109/8.489308
- I. Hashim, O. Abdulaziz, and S. Momani, Homotopy analysis method for fractional IVPs, Commun. Nonlinear Sci. Numer. Simul. 14 (2009), no. 3, 674-684. https://doi.org/10.1016/j.cnsns.2007.09.014
- E. Hesameddini, S. Shekarpaz, and H. Latifizadeh, The Chebyshev wavelet method for numerical solutions of a fractional oscillator, Int. J. Appl. Math. Research 1 (2012), no. 4, 493-509.
- A. Kilicman and Z. A. A. Al Zhour, Kronecker operational matrices for fractional calculus and some applications, Appl. Math. Comp. 187 (2007), no. 1, 250-265. https://doi.org/10.1016/j.amc.2006.08.122
- V. V. Kulish and J. L. Lage, Application of fractional calculus to fluid mechanics, J. Fluids Eng. 124 (2002), 803-806. https://doi.org/10.1115/1.1478062
- C. Lederman, J.-M. Roquejoffre, and N. Wolanski, Mathematical justification of a nonlinear integrodifferential equation for the propagation of spherical flames, Ann. Mat. Pura Appl. 183 (2004), no. 2, 173-239. https://doi.org/10.1007/s10231-003-0085-1
- U. Lepik, Solving PDEs with the aid of two-dimensional Haar wavelets, Comput. Math. Appl. 61 (2011), no. 7, 1873-1879. https://doi.org/10.1016/j.camwa.2011.02.016
- Y. Li, Solving a nonlinear fractional differential equation using Chebyshev wavelets, Commun. Nonlinear Sci. Numer. Simul. 15 (2010), no. 9, 2284-2292. https://doi.org/10.1016/j.cnsns.2009.09.020
- R. L. Magin, Fractional calculus models of complex dynamics in biological tissues, Comput. Math. Appl. 59 (2010), no. 5, 1586-1593. https://doi.org/10.1016/j.camwa.2009.08.039
- F. Mainardi, Fractional calculus: some basic problems in continuum and statistical mechanics, in: A. Carpinteri, F. Mainardi (Eds.), Fractals and Fractional Calculus in Continuum Mechanics, pp. 291-348, Springer-Verlag, New York, 1997.
- M. Meerschaert and C. Tadjeran, Finite difference approximations for two-sided space-fractional partial differential equations, Appl. Numer. Math. 56 (2006), no. 1, 80-90. https://doi.org/10.1016/j.apnum.2005.02.008
- R. N. Mohapatra, K. Vajravelu, and Y. Yin, An improved quasilinearization method for second order nonlinear boundary value problems, J. Math. Anal. Appl. 214 (1997), no. 1, 55-62. https://doi.org/10.1006/jmaa.1997.5583
- C. A. Monje, Y. Q. Chen, B. M. Vinagre, D. Xue, and V. Feliu, Fractional-order systems and controls, Advances in Industrial Control, Springer, 2010.
- M. Razzaghi and S. Yousefi, The Legendre wavelets operational matrix of integration, Internat. J. Systems Sci. 32 (2001), no. 4, 495-502. https://doi.org/10.1080/00207720120227
- M. Razzaghi and S. Yousefi, Legendre wavelets method for constrained optimal control problems, Math. Methods Appl. Sci. 25 (2002), no. 7, 529-539. https://doi.org/10.1002/mma.299
- M. Rehman and R. A. Khan, A numerical method for solving boundary value problems for fractional differential equations, Appl. Math. Model. 36 (2012), no. 3, 894-907. https://doi.org/10.1016/j.apm.2011.07.045
- U. Saeed and M. Rehman, Haar wavelet-quasilinearization technique for fractional nonlinear differential equations, Appl. Math. Comput. 220 (2013), 630-648. https://doi.org/10.1016/j.amc.2013.07.018
- U. Saeed and M. Rehman, Wavelet-Galerkin quasilinearization method for nonlinear boundary value problems, Abstr. Appl. Anal. 2014 (2014), Article ID 868934, 10 pages.
- U. Saeed and M. Rehman, Hermite wavelet method for fractional delay differential equations, J. Difference Equations 2014 (2014), Article ID 359093, 8 pages. https://doi.org/10.1186/1687-1847-2014-8
- L. R. Soares, H. M. de Oliveira, and R. J. D. Sobral Cintra, New compactly supported scaling and wavelet functions derived from Gegenbauer polynomials, Electrical and Computer Engineering, Canadian Conference on 2-5 May 2004 (vol.4) (2004), 2347-2350; DOI: 10.1109/CCECE.2004.1347717.
- S. G. Venkatesh, S. K. Ayyaswamy, and S. R. Balachandar, The Legendre wavelet method for solving initial value problems of Bratu-type, Comput. Math. Appl. 63 (2012), no. 8, 1287-1295. https://doi.org/10.1016/j.camwa.2011.12.069
- Y. Wang and Q. Fan, The second kind Chebyshev wavelet method for solving fractional differential equations, Appl. Math. Comp. 218 (2012), no. 17, 8592-8601. https://doi.org/10.1016/j.amc.2012.02.022
- Y.Wang, H. Song, and D. Li, Solving two-point boundary value problems using combined homotopy perturbation method and Greens function method, Appl. Math. Comput. 212 (2009), no. 2, 366-376. https://doi.org/10.1016/j.amc.2009.02.036
Cited by
- Numerical Solution for a System of Fractional Differential Equations with Applications in Fluid Dynamics and Chemical Engineering vol.0, pp.0, 2017, https://doi.org/10.1515/ijcre-2017-0093
- CAS Picard method for fractional nonlinear differential equation vol.307, 2017, https://doi.org/10.1016/j.amc.2017.02.044
- An efficient algorithm based on Gegenbauer wavelets for the solutions of variable-order fractional differential equations vol.133, pp.8, 2018, https://doi.org/10.1140/epjp/i2018-12172-1
- Generalized fractional order Chebyshev wavelets for solving nonlinear fractional delay-type equations pp.1793-690X, 2019, https://doi.org/10.1142/S0219691319500140