Abstract
In this paper, we propose the design of Radial Basis Function Neural Network based on PCA in order to recognize handwritten digits. The proposed pattern classifier consists of the preprocessing step of PCA and the pattern classification step of pRBFNNs. In the preprocessing step, Feature data is obtained through preprocessing step of PCA for minimizing the information loss of given data and then this data is used as input data to pRBFNNs. The hidden layer of the proposed classifier is built up by Fuzzy C-Means(FCM) clustering algorithm and the connection weights are defined as linear polynomial function. In the output layer, polynomial parameters are obtained by using Least Square Estimation (LSE). MNIST database known as one of the benchmark handwritten dataset is applied for the performance evaluation of the proposed classifier. The experimental results of the proposed system are compared with other existing classifiers.
본 논문에서는 필기체 숫자를 인식하기 위해 주성분 분석법(PCA) 기반 방사형 기저함수 신경회로망(pRBFNNs) 패턴 분류기를 설계한다. 제안된 패턴 분류기는 PCA를 이용한 데이터 전처리 단계와 pRBFNNs를 이용한 분류 단계로 구성된다. 전처리 단계에서는 PCA를 사용하여 주어진 데이터의 정보손실을 최소화한 특징데이터를 생성하고, 이를 분류 단계인 pRBFNNs의 입력으로 사용한다. 제안된 분류기의 조건부에서는 Fuzzy C-Means(FCM) 클러스터링 알고리즘으로 구성하였고, 연결가중치는 1차 선형식을 사용하였다. 결론부에서는 최소자승법(LSE)을 사용하여 다항식 계수를 구하였다. 제안된 분류기의 성능평가를 위해 대표적인 필기체 숫자데이터인 MNIST 데이터를 사용하였으며, 제안된 분류기의 결과를 기존 다른 분류기들과 비교한다.