DOI QR코드

DOI QR Code

Design of PCA-based pRBFNNs Pattern Classifier for Digit Recognition

숫자 인식을 위한 PCA 기반 pRBFNNs 패턴 분류기 설계

  • Lee, Seung-Cheol (Department of Electrical Engineering, The University of Suwon) ;
  • Oh, Sung-Kwun (Department of Electrical Engineering, The University of Suwon) ;
  • Kim, Hyun-Ki (Department of Electrical Engineering, The University of Suwon)
  • Received : 2015.03.22
  • Accepted : 2015.05.06
  • Published : 2015.08.25

Abstract

In this paper, we propose the design of Radial Basis Function Neural Network based on PCA in order to recognize handwritten digits. The proposed pattern classifier consists of the preprocessing step of PCA and the pattern classification step of pRBFNNs. In the preprocessing step, Feature data is obtained through preprocessing step of PCA for minimizing the information loss of given data and then this data is used as input data to pRBFNNs. The hidden layer of the proposed classifier is built up by Fuzzy C-Means(FCM) clustering algorithm and the connection weights are defined as linear polynomial function. In the output layer, polynomial parameters are obtained by using Least Square Estimation (LSE). MNIST database known as one of the benchmark handwritten dataset is applied for the performance evaluation of the proposed classifier. The experimental results of the proposed system are compared with other existing classifiers.

본 논문에서는 필기체 숫자를 인식하기 위해 주성분 분석법(PCA) 기반 방사형 기저함수 신경회로망(pRBFNNs) 패턴 분류기를 설계한다. 제안된 패턴 분류기는 PCA를 이용한 데이터 전처리 단계와 pRBFNNs를 이용한 분류 단계로 구성된다. 전처리 단계에서는 PCA를 사용하여 주어진 데이터의 정보손실을 최소화한 특징데이터를 생성하고, 이를 분류 단계인 pRBFNNs의 입력으로 사용한다. 제안된 분류기의 조건부에서는 Fuzzy C-Means(FCM) 클러스터링 알고리즘으로 구성하였고, 연결가중치는 1차 선형식을 사용하였다. 결론부에서는 최소자승법(LSE)을 사용하여 다항식 계수를 구하였다. 제안된 분류기의 성능평가를 위해 대표적인 필기체 숫자데이터인 MNIST 데이터를 사용하였으며, 제안된 분류기의 결과를 기존 다른 분류기들과 비교한다.

Keywords

References

  1. S. K. Oh, W. Pedrycz, B. J. Park, "Polynomial-bas ed Radial Basis Function Neural Networks realized with the Aid of Particle Swarm Optimization," Fuzzy Sets and Systems, Vol. 163, pp. 54-77, 2011. https://doi.org/10.1016/j.fss.2010.08.007
  2. S. B. Roh, S. C. Joo, W. Pedrycz, and S. K. Oh, "The development of fuzzy radial basis function neural networks based on the concept of information ambiguity," Neurocomputing, Vol. 73, No.13-15, pp. 2464-2477. 2010. https://doi.org/10.1016/j.neucom.2010.05.006
  3. W. Pedrycz, "Conditional fuzzy clustering in the design of radial basis function neural networks", IEEE Trans. Neural Networks, vol.9, pp.601-612, July 1998. https://doi.org/10.1109/72.701174
  4. J. C. Bezdek, Pattern recognition with Fuzzy Objective Function Algorithm, Plenum, New York, 1981.
  5. S. P. Lloyd, "Least squares quantization in PCM," IEEE Tran. on Information Theory, vol. 28, no. 2, pp. 129-137, 1992. https://doi.org/10.1109/TIT.1982.1056489
  6. H. Addi and L. J. Williams, "Principal component analysis," Wiley Interdisciplinary Reviews: Computational Ststicstics, vol. 2, no. 4, pp. 433-459, 2010. https://doi.org/10.1002/wics.101
  7. Y. Ke, and R. Sukthankar, "PCA-SIFT: A More Distinctive Representation for Local Image Descriptors", IEEE Computer Society Conference on Computer Vision and Pattern Recognition Vol. 2, 506-513. 2004.
  8. S. Knerr and L. Personnaz and G. Dreyfus, "Handwritten digit recognition by neural networks with single-layer training," IEEE Trans. Neural Networks, Vol. 3, No. 6, pp. 962-968, 1992. https://doi.org/10.1109/72.165597
  9. S. W. Lee, "Off-line recognition of totally unconstrained handwritten numerals using multi layer cluster neural network," IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol.18, No. 6, pp.648-652, 1996. https://doi.org/10.1109/34.506416
  10. Y. LeCun, L. Bottou, Y. Bengio and P. Haffner "Gradient-Based Learning Applied to Document Recognition", IEEE, Vol. 86, pp. 2278-2324, 1998. https://doi.org/10.1109/5.726791

Cited by

  1. Design of Digit Recognition System Realized with the Aid of Fuzzy RBFNNs and Incremental-PCA vol.26, pp.1, 2016, https://doi.org/10.5391/JKIIS.2016.26.1.056
  2. Design of RBFNNs Pattern Classifier Realized with the Aid of Face Features Detection vol.26, pp.2, 2016, https://doi.org/10.5391/JKIIS.2016.26.2.120
  3. Grading meat quality of Hanwoo based on SFTA and AdaBoost vol.26, pp.6, 2016, https://doi.org/10.5391/JKIIS.2016.26.6.433