DOI QR코드

DOI QR Code

An Experimental Study on Hydration and Strength Development of High Blain Cement at Low Temperature

저온환경에서 고분말도 시멘트의 수화반응 및 강도발현 특성에 관한 실험적 연구

  • Received : 2015.03.03
  • Accepted : 2015.06.08
  • Published : 2015.08.20

Abstract

In this study, fundamental properties of cement were reviewed to apply high fineness cement at low temperature environment. The classified high fineness cement has large proportion of particles below $10{\mu}m$ which affects early hydration: an overall reaction of cement hydration faster. As a result of using high fineness cement, setting time of concrete was reduced and compressive strength was higher than OPC at all ages. Especially, compressive strength was more than double its value compared with OPC after three days curing in low temperature. Faster reaction and higher heat of hydration was verified by calorimetry early and maximum heat of hydration was analyzed by adiabatic temperature raising test. The analysis of this study confirmed that high fineness cement can be suitable to be used in low temperature environment.

본 연구에서는 저온환경에 고분말도 시멘트를 적용하기 위하여 기초 특성을 검토하고자 하였다. 실험 결과 일반 시멘트에서 입도 분급된 고분말도 시멘트는 초기 수화에 큰 영향을 미치는 $10{\mu}m$이하의 입자가 다수 분포하였으며 분말도가 매우 높은 것으로 나타났다. 또한 분급된 미세한 시멘트 입자는 초기 수화반응이 매우 빠르고 이것은 시멘트의 수화 반응을 상승시킨다. 또한 고분말도 시멘트는 응결시간이 단축되고 모든 재령에서 압축강도가 높게 나타났다. 특히 저온환경에서는 초기 3일 압축강도 발현속도가 OPC 보다 2배 이상 발현하는 것을 확인할 수 있었으며 미소수화열 분석을 통해 수화반응 속도가 빠르고 수화열 또한 높은 것을 확인하였다. 또한 단열온도 상승 실험을 통해 초기 수화발열 상승온도 및 최고 상승온도가 높은 것으로 나타났다. 따라서 본 연구범위 내에서 저온환경 콘크리트에 우수한 시멘트 원료는 고분말시멘트로 판단된다.

Keywords

References

  1. Kim YJ, Baek TR, LEE SS, Won C, Kim DS. Application of Cold Weather Concreting with Accelerator for Freeze protection to Full Scale Structures. Journal of korea concrete institute. 2003 Apr;15(2):254-262. https://doi.org/10.4334/JKCI.2003.15.2.254
  2. Binici H, Cagatay IH, Shah T, Kapur S. Mineralogy of Plain Portland and Blended cement pastes. Building and Environment. 2008 Jul;43(7):1318-25. https://doi.org/10.1016/j.buildenv.2007.03.012
  3. Gutteridge WA, Dalziel JA. Filler cement: The effect of the secondary component on the hydration of portland cement: Part 2. Fine hydraulic binders. Cement and Concrete Research. 1990 Nov;20(6):853-61. https://doi.org/10.1016/0008-8846(90)90046-Z
  4. Jiang SP, Mutin JC, Nonat A. Studies on mechanism and physico-chemical parameters at the origin of the cement setting. I. The fundamental processes involved during the cement setting. Cement and Concrete Research. 1995 May;25(4):779-89 https://doi.org/10.1016/0008-8846(95)00068-N
  5. Oritiz J, Aguado A, Agullo L, Garcia T. Influence of environmental temperarutes on the concrete compressive strength: Simulation of hot and cold weathe conditions. Cement and Concrete Research. 2005 Oct:35(10):1970-79. https://doi.org/10.1016/j.cemconres.2005.01.004
  6. Princigallo A, Lura P, Breugel K, Levita G. Early development of properties in a cement paste: a numerical and experimental study. Cement and Concrete Research. 2003 Jul ;33(7):1013-20. https://doi.org/10.1016/S0008-8846(03)00002-4
  7. Dale PB, Edward J. Garboczi, Claus JH, Ole MJ. Effect of cement particle size distribution on performance properties of Portland cement-based materials. Cement and Concrete Research. 1999 Oct;29(10):1663-71. https://doi.org/10.1016/S0008-8846(99)00163-5
  8. Yoshida K, Okabayashi S, Tanaka K. Effect of particle size distribution of cement on packing density and compressive strength of paste. The cement association of Japan. 1991;45:86-91.
  9. Bezjak A. An extension of the dispersion model for the hydration of Portland cement. Cement and Concrete Research. 1986 Mar;16(2):260-64. https://doi.org/10.1016/0008-8846(86)90143-2
  10. Frigione G, Marra S. Relationship between particle size distribution and compressive strength in Portland cement. Cement and Concrete Research. 1976 Jan;6(1):113-27. https://doi.org/10.1016/0008-8846(76)90056-9
  11. Zhang YM, Naipier M. Effects of Particle Size Distribution, Surface Area and Chemical Composition on Portland Cement Strength. Powder Technology. 1995 Jun;83(3):245-52. https://doi.org/10.1016/0032-5910(94)02964-P

Cited by

  1. Compressive Strength and Fluidity of Low Temperature Curable Mortar Using High Early Strength Cement According to Types of Anti-freezer, Accelerator for Freeze Protection and Water Reducing Agent vol.16, pp.5, 2016, https://doi.org/10.5345/JKIBC.2016.16.5.405
  2. Study on the Properties of Field Applied Non-Curing Concrete in Winter Season vol.16, pp.5, 2016, https://doi.org/10.5345/JKIBC.2016.16.5.413
  3. An Experimental Study on Below Zero Temperature Curable Cement Mortar and Insulated·Heating Forms Development for Concrete Casting at Low Temperature vol.32, pp.5, 2016, https://doi.org/10.5659/JAIK_SC.2016.32.5.11