DOI QR코드

DOI QR Code

Efficacy of New 6-Phytase from Buttiauxella spp. on Growth Performance and Nutrient Retention in Broiler Chickens Fed Corn Soybean Meal-based Diets

  • Kiarie, E. (DuPont Industrial Bioscience-Danisco Animal Nutrition) ;
  • Woyengo, T. (Department of Animal Science, University of Manitoba) ;
  • Nyachoti, C.M. (Department of Animal Science, University of Manitoba)
  • Received : 2015.01.23
  • Accepted : 2015.03.05
  • Published : 2015.10.01

Abstract

A total of 420 day-old male Ross chicks were weighed at d 1 of life and assigned to test diets to assess the efficacy of a new Buttiauxella spp. phytase expressed in Trichoderma reesei. Diets were: positive control (PC) adequate in nutrients and negative control (NC) diet (40% and 17% less available phosphorous (P) and calcium (Ca), respectively) supplemented with 6 levels of phytase 0, 250, 500, 750, 1,000, and 2,000 phytase units (FTU)/kg of diet. All diets had titanium dioxide as digestibility marker and each diet was allocated to ten cages (6 birds/cage). Diets were fed for 3 wk to measure growth performance, apparent retention (AR) on d 17 to 21 and bone ash and ileal digestibility (AID) on d 22. Growth performance and nutrient utilization was lower (p<0.05) for NC vs PC birds. Phytase response in NC birds was linear (p<0.05) with 2,000 FTU showing the greatest improvement on body weight gain (20%), feed conversion (7.4%), tibia ash (18%), AR of Ca (38%), AR of P (51%) and apparent metabolizable energy corrected for nitrogen (5.1%) relative to NC. Furthermore, phytase at ${\geq}750FTU$ resulted in AID of total AA commensurate to that of PC fed birds and at ${\geq}1,000FTU$ improved (p<0.05) AR of P, dry matter, and N beyond that of the lower doses of phytase and PC diet. In conclusion, the result from this study showed that in addition to increased P and Ca utilization, the new Buttiauxella phytase enhanced growth performance and utilization of other nutrients in broiler chickens in a dose-dependent manner.

Keywords

References

  1. Adedokun, S. A., A. Owusu-Asiedu, P. Plumstead, and O. Adeola. 2013. The efficacy of graded levels of a new 6-phytase from Buttiauxella spp. expressed in Trichoderma reesei on ileal amino acid digestibility in pigs fed a corn-soybean meal-wheat midds corn DDGs-based diet. J. Anim. Sci. 91(E-Suppl. 2):411.
  2. Adeola, O. and J. S. Sands. 2003. Does supplemental dietary microbial phytase improve amino acid utilization? A perspective that it does not. J. Anim. Sci. 81:E78-85E.
  3. Adeola, O. and A. J. Cowieson. 2011. Opportunities and challenges in using exogenous enzymes to improve nonruminant animal production. J. Anim. Sci. 89:3189-3218. https://doi.org/10.2527/jas.2010-3715
  4. Association of Official Analytical Chemists (AOAC). 1984. Official Methods of Analysis. 14th ed. AOAC, Washington, DC, USA.
  5. Association of Official Analytical Chemists (AOAC). 1990. Official Methods of Analysis. 15th ed. AOAC, Washington, DC, USA.
  6. Association of Official Analytical Chemists (AOAC). 2005. Official Methods of Analysis of AOAC International. 18th ed. AOAC Int., Gaithersburg, MD, USA.
  7. Amerah, A. M., P. W. Plumstead, L. P. Barnard, and A. Kumar. 2014. Effect of calcium level and phytase addition on ileal phytate degradation and amino acid digestibility of broilers fed corn-based diets. Poult. Sci. 93:906-915. https://doi.org/10.3382/ps.2013-03465
  8. Canadian Council on Animal Care. 2009. Guide to Care and Use of Experimental Animals. VI. Canadian Council on Animal Care. Ottawa, ON, Canada.
  9. Cowieson, A. J., T. Acamovic, and M. R. Bedford. 2004. The effects of phytase and phytic acid on the loss of endogenous amino acids and minerals from broiler chickens. Br. Poult. Sci. 45: 101-108. https://doi.org/10.1080/00071660410001668923
  10. Cowieson, A. J. and O. Adeola. 2005. Carbohydrases, protease, and phytase have an additive beneficial effect in nutritionally marginal diets for broiler chicks. Poult. Sci. 84:1860-1867. https://doi.org/10.1093/ps/84.12.1860
  11. Cowieson, A. J., T. Acamovic, and M. R. Bedford. 2006. Supplementation of corn-soy-based diets with an Escherichia coli-derived phytase: effects on broiler chick performance and the digestibility of amino acids and metabolizability of minerals and energy. Poult. Sci. 85:1389-1397. https://doi.org/10.1093/ps/85.8.1389
  12. Glynn, I. M. 1993. All hands to the sodium pump. J. Physiol. 462: 1-30. https://doi.org/10.1113/jphysiol.1993.sp019540
  13. Greiner, R. and U. Konietzny. 2010. Phytases: Biochemistry, Enzymology and Characteristics Relevant to Animal Feed Use. In: Enzymes in Farm Animal Nutrition, 2nd ed., (Eds. M. R. Bedford and G. G. Partridge). CAB International, Wallingford, UK. pp. 96-128.
  14. Greiner, R., N.-G. Carlsson, and M. L. Alminger. 2000. Stereospecificity of myo-inositol hexakisphosphate dephosphorylation by a phytate-degrading enzyme of Escherichia coli. J. Biotechnol. 84:53-62. https://doi.org/10.1016/S0168-1656(00)00331-X
  15. Kiarie E. and C. M. Nyachoti. 2009. Bioavailability of calcium and phosphorous in feedstuffs for farm animals. In: Phosphorous and Calcium Utilization and Requirements in Farm Animals (Eds. DMSS Vitti and E Kebreab). CAB International, Wallingford, UK. pp. 76-83.
  16. Kiarie, E., L. F. Romero, and C. M. Nyachoti. 2013. The role of added feed enzymes in promoting gut health in swine and poultry. Nutr. Res. Rev. 26:71-88. https://doi.org/10.1017/S0954422413000048
  17. Latta, M. and M. A. Eskin. 1980. A simple and rapid colorimetric method for phytate determination. J. Agric. Food Chem. 28:1313-1315. https://doi.org/10.1021/jf60232a049
  18. Lomer, M. C. E., R. P. H. Thompson, J. Commisso, C. L. Keen, and J. J. Powell. 2000. Determination of titanium dioxide in foods using inductively coupled plasma optical emission spectrometry. Analyst 125:2339-2343. https://doi.org/10.1039/b006285p
  19. Martinez-Amezcua, C., C. M. Parsons, and D. H. Baker. 2006. Effect of microbial phytase and citric acid on phosphorus bioavailability, apparent metabolizable energy, and amino acid digestibility in distillers dried grains with solubles in chicks. Poult. Sci. 85:470-475. https://doi.org/10.1093/ps/85.3.470
  20. Mills, P. A., R. G. Rotter, and R. R. Marquardt. 1989. Modification of the glucosamine method for the quantification of fungal contamination. Can J. Anim. Sci. 69:1105-1106. https://doi.org/10.4141/cjas89-128
  21. NRC. 1994. Nutrient Requirements of Poultry. 19th rev. ed. Natl. Acad. Press, Washington, DC, USA.
  22. Onyango, E. M., E. K. Asem, and O. Adeola. 2009. Phytic acid increases mucin and endogenous amino acid losses from the gastrointestinal tract of chickens. Br. J. Nutr. 101:836-842. https://doi.org/10.1017/S0007114508047740
  23. Ravindran, V., S. Cabahug, G. Ravindran, and W. L. Bryden. 1999. Influence of microbial phytase on apparent ileal amino acid digestibility of feedstuffs for broilers. Poult. Sci. 78:699-706. https://doi.org/10.1093/ps/78.5.699
  24. Ravindran, V. 2013. Feed enzymes: The science, practice, and metabolic realities. J. Appl. Poult. Res. 22:628-636. https://doi.org/10.3382/japr.2013-00739
  25. Ravindran, V., A. J. Cowieson, and P. H. Selle. 2008. Influence of dietary electrolyte balance and microbial phytase on growth performance, nutrient utilization, and excreta quality of broiler chickens. Poult. Sci. 87:677-688. https://doi.org/10.3382/ps.2007-00247
  26. Rutherfurd, S. M., T. K. Chung, and P. J. Moughan. 2002. The effect of microbial phytase on ileal phosphorus and amino acid digestibility in the broiler chicken. Br. Poult. Sci. 43:598-606. https://doi.org/10.1080/0007166022000004516
  27. Rutherfurd, S. M., T. K. Chung, P. C. H. Morel, and P. J. Moughan. 2004. Effect of microbial phytase on ileal digestibility of phytate phosphorus, total phosphorus, and amino acids in a low-phosphorus diet for broilers. Poult. Sci. 83:61-68. https://doi.org/10.1093/ps/83.1.61
  28. Rutherfurd, S. M., T. K. Chung, D. V. Thomas, M. L. Zou, and P. J. Moughan. 2012. Effect of a novel phytase on growth performance, apparent metabolizable energy, and the availability of minerals and amino acids in a low-phosphorus corn-soybean meal diet for broilers. Poult. Sci. 91:1118-1127. https://doi.org/10.3382/ps.2011-01702
  29. Santos, F. R., M. Hruby, E. E. M. Pierson, J. C. Remus, and N. K. Sakomura. 2008. Effect of phytase supplementation in diets on nutrient digestibility and performance in broiler chicks. J. Appl. Poult. Res. 17:191-201. https://doi.org/10.3382/japr.2007-00028
  30. Selle, P. H., V. Ravindran, R. A. Caldwell, and W. L. Bryden. 2000. Phytate and phytase: Consequences for protein utilisation. Nutr. Res. Rev. 13:255-278. https://doi.org/10.1079/095442200108729098
  31. Selle, P. H. and V. Ravindran. 2007. Microbial phytase in poultry nutrition. Anim. Feed. Sci. Technol. 135:1-41. https://doi.org/10.1016/j.anifeedsci.2006.06.010
  32. Selle, P. H., A. J. Cowieson, and V. Ravindran. 2009. Consequences of calcium interactions with phytate and phytase for poultry and pigs. Livest. Sci. 124:126-141. https://doi.org/10.1016/j.livsci.2009.01.006
  33. Selle, P. H., A. J. Cowieson, N. P. Cowieson, and V. Ravindran. 2012. Protein-phytate interactions in pig and poultry nutrition: A reappraisal. Nutr. Res. Rev. 25:1-17. https://doi.org/10.1017/S0954422411000151
  34. Tamim, N. M., R. Angel, and M. Christman. 2004. Influence of dietary calcium and phytase on phytate phosphorus hydrolysis in broiler chickens. Poult. Sci. 83:1358-1367. https://doi.org/10.1093/ps/83.8.1358
  35. Um, J. S., H. S. Lim, S. H. Ahn, and I. K. Paik. 2000. Effects of microbial phytase supplementation to low phosphorus diets on the performance and utilization of nutrients in broiler chickens. Asian Australas. J. Anim. Sci. 13:824-829. https://doi.org/10.5713/ajas.2000.824
  36. Vigors, S., T. Sweeney, C. J. O'Shea, J. A. Browne, and J. V. O'Doherty. 2014. Improvements in growth performance, bone mineral status and nutrient digestibility in pigs following the dietary inclusion of phytase are accompanied by modifications in intestinal nutrient transporter gene expression. Br. J. Nutr. 112:688-697. https://doi.org/10.1017/S0007114514001494
  37. Waldroup, P. W. 1999. Nutritional approaches to reducing phosphorus excretion by poultry. Poult. Sci. 78:683-691. https://doi.org/10.1093/ps/78.5.683
  38. Wise, A. 1983. Dietary factors determining the biological activity of phytates. Nutr. Abstr. Rev. Clin. Nutr. 53:791-806.
  39. Woyengo T. A., A. J. Cowieson, O. Adeola, and C. M. Nyachoti. 2009. Ileal digestibility and endogenous flow of minerals and amino acids: responses to dietary phytic acid in piglets. Br. J. Nutr. 102:428-433 https://doi.org/10.1017/S0007114508184719
  40. Woyengo, T. A., E. Kiarie, and C. M. Nyachoti. 2010. Metabolizable energy and standardized ileal digestible amino acid contents of expeller-extracted canola meal fed to broiler chicks. Poult. Sci. 89:1182-1189. https://doi.org/10.3382/ps.2009-00595
  41. Woyengo, T. A., D. Weihrauch, and C. M. Nyachoti. 2012. Effect of dietary phytic acid on performance and nutrient uptake in the small intestine of piglets. J. Anim. Sci. 90:543-549. https://doi.org/10.2527/jas.2011-4001
  42. Yu, S., A. J. Cowieson, C. Gilbert, P. Plumstead, and S. Dalsgaard. 2012. Interactions of phytate and myo-inositol phosphate esters (IP1-5) including IP5 isomers with dietary protein and iron and inhibition of pepsin. J. Anim. Sci. 90:1824-1832. https://doi.org/10.2527/jas.2011-3866
  43. Yu, S., M. F. Kvidtgaard, M. F. Isaksen, and S. Dalsgaard. 2014. Characterization of a mutant Buttiauxella phytase using phytic Acid and phytic acid-protein complex as substrates. Anim. Sci. Lett. 1:18-32.
  44. Zhang X., D. A. Roland, G. R. McDaniel, and S. K. Rao. 1999. Effect of Natuphos phytase supplementation to feed on performance and ileal digestibility of protein and amino acids of broilers. Poult. Sci. 78:1567-1572. https://doi.org/10.1093/ps/78.11.1567

Cited by

  1. Effect of a microbial phytase on growth performance, plasma parameters and apparent ileal amino acid digestibility in Youxian Sheldrake fed a low-phosphorus corn-soybean diet vol.30, pp.10, 2017, https://doi.org/10.5713/ajas.16.0897
  2. Effect of dietary calcium concentrations in low non-phytate phosphorus diets containing phytase on growth performance, bone mineralization, litter quality, and footpad dermatitis incidence in growing broiler chickens vol.30, pp.7, 2017, https://doi.org/10.5713/ajas.17.0112
  3. Effect of superdosing phytase on productive performance and egg quality in laying hens vol.30, pp.7, 2017, https://doi.org/10.5713/ajas.17.0149
  4. Display of Escherichia coli Phytase on the Surface of Bacillus subtilis Spore Using CotG as an Anchor Protein pp.1559-0291, 2018, https://doi.org/10.1007/s12010-018-2855-7
  5. Effect of immobilized fungal phytase on growth performance and bone traits of broilers fed with low dietary calcium and phosphorus vol.11, pp.6, 2018, https://doi.org/10.14202/vetworld.2018.758-764
  6. Utility of Feed Enzymes and Yeast Derivatives in Ameliorating Deleterious Effects of Coccidiosis on Intestinal Health and Function in Broiler Chickens vol.6, pp.None, 2015, https://doi.org/10.3389/fvets.2019.00473
  7. Effects of a novel corn-expressed E. coli phytase on digestibility of calcium and phosphorous, growth performance, and bone ash in young growing pigs1 vol.97, pp.8, 2019, https://doi.org/10.1093/jas/skz190
  8. Exogenous Enzymes and the Digestibility of Nutrients by Broilers: A Mini Review vol.18, pp.9, 2019, https://doi.org/10.3923/ijps.2019.404.409
  9. Effect of Phytase on in Vitro Hydrolysis of Phytate and the Formation of myo-Inositol Phosphate Esters in Various Feed Materials vol.67, pp.41, 2015, https://doi.org/10.1021/acs.jafc.9b03919
  10. Effects of supplementing freeze‐dried Mitsuokella jalaludinii phytase on the growth performance and gut microbial diversity of broiler chickens vol.104, pp.1, 2015, https://doi.org/10.1111/jpn.13208
  11. Buttiauxella phytase maintains growth performance in broilers fed diets with reduced nutrients under a commercial setting vol.8, pp.2, 2015, https://doi.org/10.3920/jaan2020.0002
  12. Mitsuokella Jalaludinii Supplementation Improved Nutrient Utilization of Broilers Fed Low-Available Phosphorus Diet vol.23, pp.1, 2021, https://doi.org/10.1590/1806-9061-2020-1332
  13. The Enzymatic Digestion of Pomaces From Some Fruits for Value-Added Feed Applications in Animal Production vol.5, pp.None, 2015, https://doi.org/10.3389/fsufs.2021.611259
  14. Effect of different doses of phytase and protein content of soybean meal on growth performance, nutrient digestibility, and bone characteristics of broilers vol.100, pp.3, 2015, https://doi.org/10.1016/j.psj.2020.12.015
  15. Evaluation of the responses of broiler chickens to varying concentrations of phytate phosphorus and phytase. Ⅰ. Starter phase (day 1-11 post hatching) vol.100, pp.10, 2021, https://doi.org/10.1016/j.psj.2021.101396