DOI QR코드

DOI QR Code

Efficiency Evaluation of Harmony Search Algorithm according to Constraint Handling Techniques : Application to Optimal Pipe Size Design Problem

제약조건 처리기법에 따른 하모니써치 알고리즘의 효율성 평가 : 관로 최소비용설계 문제의 적용

  • Yoo, Do Guen (Research Center for Disaster Prevention Science and Technology, Korea University) ;
  • Lee, Ho Min (School of Civil, Environmental, and Architectural Engineering, Korea University) ;
  • Lee, Eui Hoon (School of Civil, Environmental, and Architectural Engineering, Korea University) ;
  • Kim, Joong Hoon (School of Civil, Environmental, and Architectural Engineering, Korea University)
  • 유도근 (고려대학교 방재과학기술연구소) ;
  • 이호민 (고려대학교 건축사회환경공학부) ;
  • 이의훈 (고려대학교 건축사회환경공학부) ;
  • 김중훈 (고려대학교 건축사회환경공학부)
  • Received : 2015.03.11
  • Accepted : 2015.07.16
  • Published : 2015.07.31

Abstract

The application of efficient constraint handling technique is fundamental method to find better solutions in engineering optimization problems with constraints. In this research four of constraint handling techniques are used with a meta-heuristic optimization method, harmony search algorithm, and the efficiency of algorithm is evaluated. The sample problem for evaluation of effectiveness is one of the typical discrete problems, optimal pipe size design problem of water distribution system. The result shows the suggested constraint handling technique derives better solutions than classical constraint handling technique with penalty function. Especially, the case of ${\varepsilon}$-constrained method derives solutions with efficiency and stability. This technique is meaningful method for improvement of harmony search algorithm without the need for development of new algorithm. In addition, the applicability of suggested method for large scale engineering optimization problems is verified with application of constraint handling technique to big size problem has over 400 of decision variables.

제약조건이 있는 공학 최적화 문제에서 보다 좋은 결과를 얻기 위해서는 효율적인 제약조건 처리기법의 적용은 필수적이다. 본 연구에서는 네 가지의 제약조건 처리기법을 적용하여 메타휴리스틱 최적화 기법으로 널리 사용되고 있는 Harmony Search 알고리즘의 최적화 효율성을 평가하였다. 평가를 위해 대표적인 이산형 최적화 문제 중 하나인 상수관로 최소비용설계 문제를 적용하였다. 적용결과 전통적인 제약조건 처리방법으로 사용되던 벌칙함수에 비해 제안된 제약조건 처리기법의 결과가 효율적임을 확인하였다. 특히, ${\varepsilon}$-Constrained Method의 경우 기존방법에 비하여 효율적이고 안정적인 결과를 도출하였다. 제안된 방법은 새로운 최적화 알고리즘의 개발 필요 없이 HS의 성능을 증가시킬 수 있다는 점에서 의의가 있다고 판단된다. 또한 400개 이상의 결정변수를 가지는 대규모 문제의 적용을 통하여, 제안된 방법이 대규모 공학 최적화 문제에서도 활용이 가능함을 확인하였다.

Keywords

References

  1. Holland J. H. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. U Michigan Press, 1975.
  2. Glover F. "Heuristics for integer programming using surrogate constraints." Decision Sciences 8.1 (1977): 156-166. DOI: http://dx.doi.org/10.1111/j.1540-5915.1977.tb01074.x
  3. Kirkpatrick S. and Vecchi M. P. "Optimization by simmulated annealing." science 220.4598 (1983): 671-680. https://doi.org/10.1126/science.220.4598.671
  4. Dorigo M. "Optimization, learning and natural algorithms." Ph. D. Thesis, Politecnico di Milano, Italy 1992.
  5. Eberhart R. C. and Kennedy J. "A new optimizer using particle swarm theory." Proceedings of the sixth international symposium on micro machine and human science. Vol. 1. 1995. DOI: http://dx.doi.org/10.1109/MHS.1995.494215
  6. Storn R. and Kenneth V. "Minimizing the Real Functions of the ICEC'96 Contest by Differential Evolution." International Conference on Evolutionary Computation. 1996. DOI: http://dx.doi.org/10.1109/icec.1996.542711
  7. Geem Z. W., Kim J. H. and Loganathan G. V. "A new heuristic optimization algorithm: harmony search." Simulation 76.2 (2001): 60-68. DOI: http://dx.doi.org/10.1177/003754970107600201
  8. Kim J. H., Geem Z. W. and Kim E. S. "Parameter Estimation Of The Nonlinear Muskingum Model Using Harmony Search." (2001): 1131-1138.
  9. Nakrani S. and Tovey C. "On honey bees and dynamic server allocation in internet hosting centers." Adaptive Behavior 12.3-4 (2004): 223-240. https://doi.org/10.1177/105971230401200308
  10. Yang X. S. "Firefly algorithm, Levy flights and global optimization." Research and Development in Intelligent Systems XXVI. Springer London, 2010a. 209-218. DOI: http://dx.doi.org/10.1007/978-1-84882-983-1_15
  11. Yang X. S. "A new metaheuristic bat-inspired algorithm." Nature inspired cooperative strategies for optimization (NICSO 2010b). Springer Berlin Heidelberg, 2010. 65-74. DOI: http://dx.doi.org/10.1007/978-3-642-12538-6_6
  12. Yang X. S. and Deb S. "Engineering optimisation by cuckoo search." International Journal of Mathematical Modelling and Numerical Optimisation 1.4 (2010): 330-343. DOI: http://dx.doi.org/10.1504/IJMMNO.2010.035430
  13. Eskandar H., Sadollah A., Bahreininejad A. and Hamdi M. "Water cycle algorithm-A novel metaheuristic optimization method for solving constrained engineering optimization problems." Computers &Structures 110 (2012): 151-166. DOI: http://dx.doi.org/10.1016/j.compstruc.2012.07.010
  14. Sadollah A., Bahreininejad A., Eskandar H. and Hamdi M. "Mine blast algorithm for optimization of truss structures with discrete variables." Computers &Structures 102 (2012): 49-63. DOI: http://dx.doi.org/10.1016/j.compstruc.2012.03.013
  15. Michalewicz Z. "A Survey of Constraint Handling Techniques in Evolutionary Computation Methods." Evolutionary Programming 4 (1995): 135-155.
  16. Deb K. and Agrawal S. "A niched-penalty approach for constraint handling in genetic algorithms." Artificial Neural Nets and Genetic Algorithms. Springer Vienna, 1999. DOI: http://dx.doi.org/10.1007/978-3-7091-6384-9_40
  17. Deb K. "An efficient constraint handling method for genetic algorithms." Computer methods in applied mechanics and engineering 186.2 (2000): 311-338. DOI: http://dx.doi.org/10.1016/S0045-7825(99)00389-8
  18. Hilton A. B. C. and Culver T. B. "Constraint handling for genetic algorithms in optimal remediation design." Journal of Water Resources Planning and Management 126.3 (2000): 128-137. DOI: http://dx.doi.org/10.1061/(ASCE)0733-9496(2000)126:3(128)
  19. Runarsson T. P. and Yao X. "Stochastic ranking for constrained evolutionary optimization." Evolutionary Computation, IEEE Transactions on 4.3 (2000): 284-294. DOI: http://dx.doi.org/10.1109/4235.873238
  20. Coello C. A. C. "Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art." Computer methods in applied mechanics and engineering 191.11 (2002): 1245-1287. DOI: http://dx.doi.org/10.1016/S0045-7825(01)00323-1
  21. Coello C. A. C. and Montes E. M. "Constraint-handling in genetic algorithms through the use of dominance-based tournament selection." Advanced Engineering Informatics 16.3 (2002): 193-203. DOI: http://dx.doi.org/10.1016/S1474-0346(02)00011-3
  22. Lampineni J. "A constraint handling approach for the differential evolution algorithm." Computational Intelligence, Proceedings of the World on Congress on. Vol. 2. IEEE, 2002. DOI: http://dx.doi.org/10.1109/cec.2002.1004459
  23. Miettinen K., Makela M. M. and Toivanen J. "Numerical comparison of some penalty-based constraint handling techniques in genetic algorithms." Journal of Global Optimization 27.4 (2003): 427-446. DOI: http://dx.doi.org/10.1023/A:1026065325419
  24. Pulido G. T. and Coello C. A. C. "A constraint-handling mechanism for particle swarm optimization." Evolutionary Computation, 2004. CEC2004. Congress on. Vol. 2. Ieee, 2004.
  25. Chootinan P. and Chen A. "Constraint handling in genetic algorithms using a gradient-based repair method." Computers &operations research 33.8 (2006): 2263-2281. DOI: http://dx.doi.org/10.1016/j.cor.2005.02.002
  26. Oyama A., Shimoyama K. and Fujii K. "New constraint-handling method for multi-objective and multi-constraint evolutionary optimization." Transactions of the Japan Society for Aeronautical and Space Sciences 50.167 (2007): 56-62. DOI: http://dx.doi.org/10.2322/tjsass.50.56
  27. Mallipeddi M. and Suganthan P. N. "Ensemble of constraint handling techniques." Evolutionary Computation, IEEE Transactions on 14.4 (2010): 561-579. DOI: http://dx.doi.org/10.1109/TEVC.2009.2033582
  28. Zhang H. and Rangaiah G. P. "An efficient constraint handling method with integrated differential evolution for numerical and engineering optimization." Computers &Chemical Engineering 37 (2012): 74-88. DOI: http://dx.doi.org/10.1016/j.compchemeng.2011.09.018
  29. Yun J. J. and Lee H. K. "Job Shop Scheduling by Tabu Search Combined with Constraint Satisfaction Technique." Journal of the Society of Korea Industrial and Systems Engineering 25.71 (2002): 92-101.
  30. Jung H. E., Jeon S. B. and Jo G. S. "A Web-based Spatial Layout Planning System with Constraint Satisfaction Problems." Journal of Koreaa Institute of Information Scientists and Engineering: Computing Practices and Letters 6.2 (2000): 216-224.
  31. Baek C. W., Kim E. S., Park M. J. and Kim J. H. "Development of Optimal Decision-Making System for Rehabilitation of Water Distribution Systems Using ReHS." Journal of Korea Water Resources Association 38.3 (2005): 199-212. DOI: http://dx.doi.org/10.3741/JKWRA.2005.38.3.199
  32. Takahama T. and Sakai S. "Constrained optimization by ${\varepsilon}$ constrained differential evolution with dynamic ${\varepsilon}$-level control." Advances in Differential Evolution. Springer Berlin Heidelberg, 2008. 139-154. DOI: http://dx.doi.org/10.1007/978-3-540-68830-3_5
  33. Rossman L. A. "EPANET 2: users manual." (2000).
  34. Fujiwara O. and Khang D. B. "A two-phase decomposition method for optimal design of looped water distribution networks." Water resources research 26.4 (1990): 539-549. DOI: http://dx.doi.org/10.1029/WR026i004p00539
  35. Reca J., Martinez J., Gil C. and Banos R. "Application of several meta-heuristic techniques to the optimization of real looped water distribution networks." Water Resources Management 22.10 (2008): 1367-1379. DOI: http://dx.doi.org/10.1007/s11269-007-9230-8
  36. Zecchin, A. C., Simpson, A. R., Maier, H. R., Leonard, M., Roberts, A. J. and Berrisford, M. J. "Application of two ant colony optimisation algorithms to water distribution system optimisation." Mathematical and computer modelling 44.5 (2006): 451-468. https://doi.org/10.1016/j.mcm.2006.01.005
  37. Geem, Z. W. "Particle-swarm harmony search for water network design." Engineering Optimization 41.4 (2009): 297-311. DOI: http://dx.doi.org/10.1080/03052150802449227