DOI QR코드

DOI QR Code

Sedative-Hypnotic and Receptor Binding Studies of Fermented Marine Organisms

  • Joung, Hye-Young (Department of Physiology, College of Medicine, The Catholic University of Korea) ;
  • Kang, Young Mi (Marine Bioprocess Co., Ltd.) ;
  • Lee, Bae-Jin (Marine Bioprocess Co., Ltd.) ;
  • Chung, Sun Yong (Department of Oriental Neuropsychiatry, Kyung Hee University Korean Medicine Hospital at Gangdong) ;
  • Kim, Kyung-Soo (Department of Family Medicine, College of Medicine, The Catholic University of Korea) ;
  • Shim, Insop (Department of Science in Korean Medicine, Graduate School, College of Korean Medicine, Kyung Hee University)
  • Received : 2014.10.23
  • Accepted : 2015.07.03
  • Published : 2015.09.01

Abstract

This study was performed to investigate the sedative-hypnotic activity of ${\gamma}$-aminobutyric acid (GABA)-enriched fermented marine organisms (FMO), including sea tangle (FST) and oyster (FO) by Lactobacillus brevis BJ20 (L. brevis BJ20). FST and FO were tested for their binding activity of the $GABA_A$-benzodiazepine and 5-$HT_{2C}$ receptors, which are well-known molecular targets for sleep aids. We also measured the sleep latency and sleep duration during pentobarbital-induced sleep in mice after oral administration of FST and FO. In $GABA_A$ and 5-$HT_{2C}$ receptor binding assays, FST displayed an effective concentration-dependent binding affinity to $GABA_A$ receptor, similar to the binding affinity to 5-$HT_{2C}$ receptor. FO exhibited higher affinity to 5-$HT_{2C}$ receptor, compared with the $GABA_A$ receptor. The oral administration of FST and FO produced a dose-dependent decrease in sleep latency and increase in sleep duration in pentobarbital-induced hypnosis. The data demonstrate that FST and FO possess sedativehypnotic activity possibly by modulating $GABA_A$ and 5-$HT_{2C}$ receptors. We propose that FST and FO might be effective agents for treatment of insomnia.

Keywords

References

  1. Abourashed, E. A., Koetter, U. and Brattstrom, A. (2004) In vitro binding experiments with a Valerian, hops and their fixed combination extract (Ze91019) to selected central nervous system receptors. Phytomedicine 11, 633-638. https://doi.org/10.1016/j.phymed.2004.03.005
  2. Aoki, H., Furuya, Y., Endo, Y. and Fujimoto, K. (2003) Effect of gammaaminobutyric acid-enriched tempeh-like fermented soybean (GABA-Tempeh) on the blood pressure of spontaneously hypertensive rats. Biosci. Biotechnol. Biochem. 67, 1806-1808. https://doi.org/10.1271/bbb.67.1806
  3. Athukorala, Y., Kim, K. N. and Jeon, Y. J. (2006) Antiproliferative and antioxidant properties of an enzymatic hydrolysate from brown alga, Ecklonia cava. Food Chem. Toxicol. 44, 1065-1074. https://doi.org/10.1016/j.fct.2006.01.011
  4. Athukorala, Y., Lee K. W., Kim S. K. and Jeon Y. J. (2007) Anticoagulant activity of marine green and brown algae collected from Jeju Island in Korea. Bioresour. Technol. 98, 1711-1716. https://doi.org/10.1016/j.biortech.2006.07.034
  5. Attele, A. S., Xie, J. T. and Yuan, C. S. (2000) Treatment of insomnia: an alternative approach. Altern. Med. Rev. 5, 249-259.
  6. Borja, N. L. and Daniel, K. L. (2006) Ramelteon for the treatment of insomnia. Clin. Ther. 28, 1540-1555. https://doi.org/10.1016/j.clinthera.2006.10.016
  7. Cho, S. M., Shimizu, M., Lee, C. J., Han, D. S., Jung, C. K., Jo, J. H. and Kim, Y. M. (2010) Hypnotic effects and binding studies for GABA(A) and 5-HT(2C) receptors of traditional medicinal plants used in Asia for insomnia. J. Ethnopharmacol. 132, 225-232. https://doi.org/10.1016/j.jep.2010.08.009
  8. Doghramji, K. (2006) The epidemiology and diagnosis of insomnia. Am. J. Manag Care 12, S214-220.
  9. Fuda H., Watanabe M., Hui S.P., Joko S., Okabe H., Jin S., Takeda S., Miki E., Watanabe T., Chiba H. (2015) Anti-apoptotic effects of novel phenolic antioxitant isolated from the pacific oyster (Cassostrea gigas) on cultured human hepatocytes under oxidative stress. Food Chem. 176, 226-233. https://doi.org/10.1016/j.foodchem.2014.12.066
  10. Johnston, G. A. (2005) GABA(A) receptor channel pharmacology. Curr. Pharm. Des. 11, 1867-1885. https://doi.org/10.2174/1381612054021024
  11. Kang, Y. M., Lee, B. J., Kim, J. I., Nam, B. H., Cha, J. Y., Kim, Y. M., Ahn, C. B., Choi, J. S., Choi, I. S. and Je, J. Y. (2012) Antioxidant effects of fermented sea tangle (Laminaria japonica) by Lactobacillus brevis BJ20 in individuals with high level of gamma-GT: A randomized, double-blind, and placebo-controlled clinical study. Food Chem. Toxicol. 50, 1166-1169. https://doi.org/10.1016/j.fct.2011.11.026
  12. Kimura, T., Saunders, P. A., Kim, H. S., Rheu, H. M., Oh, K. W. and Ho, I. K. (1994) Interactions of ginsenosides with ligand-bindings of GABA(A) and GABA(B) receptors. Gen. Pharmacol. 25, 193-9. https://doi.org/10.1016/0306-3623(94)90032-9
  13. Lee, B. H., Kim, J. S., Kang, Y. M., Lim, J. H., Kim, Y. M., Lee, M. S., Jeong, M. H., Ahn, C. B. and Je, J. Y. (2010) Antioxidant activity and $\gamma$-aminobutyric acid (GABA) content in sea tangle fermented by Lactobacillus brevis BJ20 isolate from traditional fermented foods. Food Chem. 122, 271-276. https://doi.org/10.1016/j.foodchem.2010.02.071
  14. Lee, C. I., Kim, C. S., Han, J. Y., Oh, E. H., Oh, K. W. and Eun, J. S. (2012) Repeated administration of Korea red ginseng extract increases non-rapid eye movement sleep via GABAAergic systems. J. Ginseng Res. 36, 403-410. https://doi.org/10.5142/jgr.2012.36.4.403
  15. Liu, S., Bubar, M. J., Lanfranco, M. F., Hillman, G. R. and Cunningham, K. A. (2007) Serotonin2C receptor localization in GABA neurons of the rat medial prefrontal cortex: implications for understanding the neurobiology of addiction. Neuroscience 146,1677-1688. https://doi.org/10.1016/j.neuroscience.2007.02.064
  16. Ma, Y., Ma, H., Eun, J. S., Nam, S. Y., Kim, Y. B., Hong, J. T., Lee, M. K. and Oh, K. W. (2009) Methanol extract of Longanae Arillus augments pentobarbital-induced sleep behaviors through the modification of GABAergic systems. J. Ethnopharmacol. 122, 245-250. https://doi.org/10.1016/j.jep.2009.01.012
  17. Roth, T., Hajak, G. and Ustun T. B. (2001) Consensus for the pharmacological management of insomnia in the new millennium. Int. J. Clin. Pract. 55, 42-52.
  18. Shizuka, F., Kido, Y., Nakazawa, T., Kitajima, H., Aizawa, C., Kayamura, H. and Ichijo, N. (2004) Antihypertensive effect of gammaamino butyric acid enriched soy products in spontaneously hypertensive rats. Biofactors 22, 165-167. https://doi.org/10.1002/biof.5520220133
  19. Silva, M. I., de Aquino Neto, M. R., Teixeira Neto, P. F., Moura, B. A., do Amaral, J. F., de Sousa, D. P., Vasconcelos, S. M. and de Sousa, F. C. (2007) Central nervous system activity of acute administration of isopulegol in mice. Pharmacol. Biochem. Behav. 88, 141-147. https://doi.org/10.1016/j.pbb.2007.07.015
  20. Smith, M. I., Piper, D. C., Duxon, M. S. and Upton, N. (2002) Effect of SB-243213, a selective 5-HT(2C) receptor antagonist, on the rat sleep profile: a comparison to paroxetine. Pharmacol. Biochem. Behav. 71, 599-605. https://doi.org/10.1016/S0091-3057(01)00702-X
  21. Smith, A. J. and Simpson, P. B. (2003) Methodological approaches for the study of GABA(A) receptor pharmacology and functional responses. Anal. Bioanal. Chem. 377, 843-851. https://doi.org/10.1007/s00216-003-2172-y

Cited by

  1. Quinpirole Increases Melatonin-Augmented Pentobarbital Sleep via Cortical ERK, p38 MAPK, and PKC in Mice vol.24, pp.2, 2016, https://doi.org/10.4062/biomolther.2015.097