DOI QR코드

DOI QR Code

Anti-Oxidative Effect of Myrtenal in Prevention and Treatment of Colon Cancer Induced by 1, 2-Dimethyl Hydrazine (DMH) in Experimental Animals

  • Received : 2015.04.08
  • Accepted : 2015.05.15
  • Published : 2015.09.01

Abstract

Colon cancer is considered as the precarious forms of cancer in many developed countries, with few to no symptoms; the tumor is often diagnosed in the later stages of cancer. Monoterpenes are a major part of plant essential oils found largely in fruits, vegetables and herbs. The cellular and molecular activities show therapeutic progression that may reduce the risk of developing cancer by modulating the factors responsible for colon carcinogenesis. Colon cancer was induced with DMH with a dose of (20 mg/Kg/body weight) for 15 weeks by subcutaneous injection once in a week. Myrtenal treatment was started with (230 mg/Kg/body weight) by intragastric administration, one week prior to DMH induction and continued till the experimental period of 30 weeks. The Invivo results exhibit the elevated antioxidant and lipid peroxidation levels in DMH treated animals. The Histopathological analysis of colon tissues well supported the biochemical alterations and inevitably proves the protective role of Myrtenal. Treatment with myrtenal to cancer bearing animals resulted in a remarkable increase in the inherent antioxidants and excellent modulation in the morphological and physiological nature of the colon tissue. It is thus concluded that myrtenal exhibits excellent free radical scavenging activity and anticancer activity through the suppression of colon carcinoma in Wistar albino rats.

Keywords

References

  1. Ahmad, I., Hamid, T., Fatima, M., Chand, H. S., Jain, S. K., Athar, M. and Raisuddin, S. (2000) Induction of hepatic antioxidants in freshwater catfish (Channa punctatus Bloch) is a biomarker of paper mill effluent exposure. Biochim. Biophys. Acta 1523, 37-48. https://doi.org/10.1016/S0304-4165(00)00098-2
  2. Arbos, K. A., Claro, L. M., Borges, L., Santos, C. A. and Weffort-Santos, A. M. (2008) Human erythrocytes as a system for evaluating the antioxidant capacity of vegetable extracts. Nutr. Res. 28, 457-463. https://doi.org/10.1016/j.nutres.2008.04.004
  3. Babu, L. H., Perumal, S. and Balasubramanian, M. P. (2012) Myrtenal, a natural monoterpene, down-regulates TNF-${\alpha}$ expression and suppresses carcinogen-induced hepatocellular carcinoma in rats. Mol. Cell. Biochem. 369, 183-193. https://doi.org/10.1007/s11010-012-1381-0
  4. Belkaid, A., Currie, J.-C., Desgagnes, J. and Annabi, B. (2006) The chemopreventive properties of chlorogenic acid reveal a potential new role for the microsomal glucose-6-phosphate translocase in brain tumor progression. Cancer Cell Int. 6, 7. https://doi.org/10.1186/1475-2867-6-7
  5. Bicas, J. L., Dionisio, A. P. and Pastore, G. M. (2009) Bio-oxidation of terpenes: an approach for the flavor industry. Chem. Rev. 109, 4518-4531. https://doi.org/10.1021/cr800190y
  6. Bishayee, A., Ahmed, S., Brankov, N. and Perloff, M. (2011) Triterpenoids as potential agents for the chemoprevention and therapy of breast cancer. Front. Biosci. 16, 980-996. https://doi.org/10.2741/3730
  7. Brown, D. D. and Caston, J. D. (1962) Biochemistry of amphibian development: I. Ribosome and protein synthesis in early development of Rana pipiens. Dev. Biol. 5, 412-434. https://doi.org/10.1016/0012-1606(62)90022-2
  8. Casado, J., Fornaguera, J. and Galan, M. I. (2005) Mineralization of aromatics in water by sunlight-assisted electro-Fenton technology in a pilot reactor. Environ. Sci. Technol. 39, 1843-1847. https://doi.org/10.1021/es0498787
  9. Crowell, P. L. (1999) Prevention and therapy of cancer by dietary monoterpenes. J. Nutr. 129, 775S-778S.
  10. De Salvo, G. L., Gava, C., Lise, M. and Pucciarelli, S. (2004) Curative surgery for obstruction from primary left colorectal carcinoma: primary or staged resection? Cochrane Database Syst Rev. CD002101.
  11. Desai, I. D. (1984) Vitamin E analysis methods for animal tissues. Methods Enzymol. 105, 138-147. https://doi.org/10.1016/S0076-6879(84)05019-9
  12. Donaldson, M. S. (2004) Nutrition and cancer: a review of the evidence for an anti-cancer diet. Nutr. J. 3, 19. https://doi.org/10.1186/1475-2891-3-19
  13. Duthie, G. G., Duthie, S. J. and Kyle, J. A. (2000) Plant polyphenols in cancer and heart disease: implications as nutritional antioxidants. Nutr. Res. Rev. 13, 79-106. https://doi.org/10.1079/095442200108729016
  14. Giannoni, E., Bianchini, F., Calorini, L. and Chiarugi, P. (2011) Cancer associated fibroblasts exploit reactive oxygen species through a proinflammatory signature leading to epithelial mesenchymal transition and stemness. Antioxid. Redox Signal. 14, 2361-2371. https://doi.org/10.1089/ars.2010.3727
  15. Habig, W. H., Pabst, M. J. and Jakoby, W. B. (1974) Glutathione Stransferases the first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249, 7130-7139.
  16. Haggar, F. A. and Boushey, R. P. (2009) Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors. Clin. Colon Rectal Surg. 22, 191-197. https://doi.org/10.1055/s-0029-1242458
  17. Halliwell, B. (1994) Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet 344, 721-724. https://doi.org/10.1016/S0140-6736(94)92211-X
  18. Jabs, T. (1999) Reactive oxygen intermediates as mediators of programmed cell death in plants and animals. Biochem. Pharmacol. 57, 231-245. https://doi.org/10.1016/S0006-2952(98)00227-5
  19. Jiang, Z.-Q., Chen, C., Yang, B., Hebbar, V. and Kong, A.-N. T. (2003) Differential responses from seven mammalian cell lines to the treatments of detoxifying enzyme inducers. Life Sci. 72, 2243-2253. https://doi.org/10.1016/S0024-3205(03)00101-2
  20. Joshi, R., Kumar, M. S., Satyamoorthy, K., Unnikrisnan, M. and Mukherjee, T. (2005) Free radical reactions and antioxidant activities of sesamol: pulse radiolytic and biochemical studies. J. Agric. Food Chem. 53, 2696-2703. https://doi.org/10.1021/jf0489769
  21. Kumari, A. and Kakkar, P. (2008) Screening of antioxidant potential of selected barks of Indian medicinal plants by multiple in vitro assays. Biomed. Environ. Sci. 21, 24-29. https://doi.org/10.1016/S0895-3988(08)60003-3
  22. Laughlin, L. T., Bernat, B. A. and Armstrong, R. N. (1998) Mechanistic imperative for the evolution of a metalloglutathione transferase of the vicinal oxygen chelate superfamily. Chem. Biol. Interact. 111, 41-50.
  23. Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265-275.
  24. Macarthur, M., Hold, G. L. and El-Omar, E. M. (2004) Inflammation and Cancer II. Role of chronic inflammation and cytokine gene polymorphisms in the pathogenesis of gastrointestinal malignancy. Am. J. Physiol. Gastrointest. Liver Physiol 286, G515-G520. https://doi.org/10.1152/ajpgi.00475.2003
  25. Mao, G. D., Thomas, P., Lopaschuk, G. and Poznansky, M. (1993) Superoxide dismutase (SOD)-catalase conjugates. Role of hydrogen peroxide and the Fenton reaction in SOD toxicity. J. Biol. Chem. 268, 416-420.
  26. Marklund, S. and Marklund, G. (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47, 469-474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  27. Marks, F. and Furstenberger, G. (2000) Cancer chemoprevention through interruption of multistage carcinogenesis: the lessons learnt by comparing mouse skin carcinogenesis and human large bowel cancer. Eur. J. Cancer 36, 314-329. https://doi.org/10.1016/S0959-8049(99)00318-4
  28. Marnett, L. J. (2000) Oxyradicals and DNA damage. Carcinogenesis 21, 361-370. https://doi.org/10.1093/carcin/21.3.361
  29. Martin, R. C., Li, Y., Liu, Q., Barker, D. F., Doll, M. A. and Hein, D. W. (2010) Manganese superoxide dismutase expression as a function of genotype and lung cancer pathology. Cancer Invest. 28, 813-819. https://doi.org/10.3109/07357900903405918
  30. Meinschein, W. (1969) Hydrocarbons-saturated, unsaturated and aromatic. In Organic geochemistry (G. Eglinton, Ed.), pp. 330-356. Springer, Berlin.
  31. Milan, K. M., Dholakia, H., Tiku, P. K. and Vishveshwaraiah, P. (2008) Enhancement of digestive enzymatic activity by cumin (Cuminum cyminum L.) and role of spent cumin as a bionutrient. Food Chem. 110, 678-683. https://doi.org/10.1016/j.foodchem.2008.02.062
  32. Moron, M. S., Depierre, J. W. and Mannervik, B. (1979) Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim. Biophys. Acta 582, 67-78. https://doi.org/10.1016/0304-4165(79)90289-7
  33. Nair, U., Bartsch, H. and Nair, J. (2007) Lipid peroxidation-induced DNA damage in cancer-prone inflammatory diseases: a review of published adduct types and levels in humans. Free Radic. Biol. Med. 43, 1109-1120. https://doi.org/10.1016/j.freeradbiomed.2007.07.012
  34. Nakamura, Y., Miyamoto, M., Murakami, A., Ohigashi, H., Osawa, T. and Uchida, K. (2003) A phase II detoxification enzyme inducer from lemongrass: identification of citral and involvement of electrophilic reaction in the enzyme induction. Biochem. Biophys. Res. Commun. 302, 593-600. https://doi.org/10.1016/S0006-291X(03)00219-5
  35. Navarro, J., Obrador, E., Carretero, J., Petschen, I., Avino, J., Perez, P. and Estrela, J. M. (1999) Changes in glutathione status and the antioxidant system in blood and in cancer cells associate with tumour growth in vivo. Free Radic. Biol. Med. 26, 410-418. https://doi.org/10.1016/S0891-5849(98)00213-5
  36. Ohkawa, H., Ohishi, N. and Yagi, K. (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95, 351-358. https://doi.org/10.1016/0003-2697(79)90738-3
  37. Omura, T. and Sato, R. (1964) The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature. J. Biol. Chem. 239, 2370-2378.
  38. Pham-Huy, L. A., He, H. and Pham-Huy, C. (2008) Free radicals, antioxidants in disease and health. Int. J. Biomed. Sci. 4, 89-96.
  39. Pisani, P., Bray, F. and Parkin, D. M. (2002) Estimates of the worldwide prevalence of cancer for 25 sites in the adult population. Int. J. Cancer 97, 72-81. https://doi.org/10.1002/ijc.1571
  40. Rawal, U., Patel, U., Rao, G. and Desai, R. (1977) Clinical and biochemical studies on cateractous human lens III. Quantitative study of protein, RNA and DNA. Arogya J. Health Sci. 3, 69-72.
  41. Rotruck, J., Pope, A., Ganther, H., Swanson, A., Hafeman, D. G. and Hoekstra, W. (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179, 588-590. https://doi.org/10.1126/science.179.4073.588
  42. Schneider, W. C. (1957) Determination of nucleic acids in tissues by pentose analysis. Methods Enzymol. 3, 680-684. https://doi.org/10.1016/S0076-6879(57)03442-4
  43. Sinha, A. K. (1972) Colorimetric assay of catalase. Anal. Biochem. 47, 389-394. https://doi.org/10.1016/0003-2697(72)90132-7
  44. Staal, G. E., Visser, J. and Veeger, C. (1969) Purification and properties of glutathione reductase of human erythrocytes. Biochim Biophys. Acta 185, 39-48. https://doi.org/10.1016/0005-2744(69)90280-0
  45. Strehle, K. R., Rosch, P., Berg, D., Schulz, H. and Popp, J. (2006) Quality control of commercially available essential oils by means of Raman spectroscopy. J. Agric. Food Chem. 54, 7020-7026. https://doi.org/10.1021/jf061258x
  46. Suzuki, N., Miller, G., Morales, J., Shulaev, V., Torres, M. A. and Mittler, R. (2011) Respiratory burst oxidases: the engines of ROS signaling. Curr. Opin. Plant Biol. 14, 691-699. https://doi.org/10.1016/j.pbi.2011.07.014
  47. Tas, F., Hansel, H., Belce, A., Ilvan, S., Argon, A., Camlica, H. and Topuz, E. (2005) Oxidative stress in breast cancer. Med. Oncol. 22, 11-15. https://doi.org/10.1385/MO:22:1:011
  48. Vibha, J., Choudhary, K., Singh, M., Rathore, M. and Shekhawat, N. (2009) A study on pharmacokinetics and therapeutic efficacy of Glycyrrhiza glabra: a miracle medicinal herb. Bot. Res. Int. 2, 157-163.
  49. Zarkovic, N. (2003) 4-Hydroxynonenal as a bioactive marker of pathophysiological processes. Mol. Aspects Med. 24, 281-291. https://doi.org/10.1016/S0098-2997(03)00023-2
  50. Ziajka, J. and Pasiuk-Bronikowska, W. (2005) Rate constants for atmospheric trace organics scavenging SO 4- in the Fe-catalysed autoxidation of S (IV). Atmos. Environ. 39, 1431-1438. https://doi.org/10.1016/j.atmosenv.2004.11.024

Cited by

  1. ANGPTL2 expression in gastric cancer tissues and cells and its biological behavior vol.22, pp.47, 2016, https://doi.org/10.3748/wjg.v22.i47.10364
  2. Construing temporal metabolomes for acetous fermentative production of Rubus coreanus vinegar and its in vivo nutraceutical effects vol.34, 2017, https://doi.org/10.1016/j.jff.2017.04.034
  3. Biological activity of oxygenated pinene derivatives on human colon normal and carcinoma cells vol.33, pp.6, 2018, https://doi.org/10.1002/ffj.3471
  4. Can cannabidiol inhibit angiogenesis in colon cancer? pp.1618-565X, 2018, https://doi.org/10.1007/s00580-018-2810-6
  5. 6-shogaol a Active Component from Ginger Inhibits Cell Proliferation and Induces Apoptosis through Inhibition of STAT-3 Translocation in Ovarian Cancer Cell Lines (A2780) vol.24, pp.3, 2015, https://doi.org/10.1007/s12257-018-0502-3
  6. Anti-Inflammatory and Antioxidant Effects of Carpesium cernuum L. Methanolic Extract in LPS-Stimulated RAW 264.7 Macrophages vol.2020, pp.None, 2015, https://doi.org/10.1155/2020/3164239
  7. Biochemical and molecular aspects of 1,2-dimethylhydrazine (DMH)-induced colon carcinogenesis: a review vol.9, pp.1, 2015, https://doi.org/10.1093/toxres/tfaa004
  8. Chemoprotective effect of crocetin against 1,2 dimethyl hydrazine induced colorectal cancer in albino wistar rats through antioxidant pathway vol.17, pp.74, 2015, https://doi.org/10.4103/pm.pm_311_20