References
- Allen-Hoffmann, B. L., Schlosser, S. J., Ivarie, C. A., Sattler, C. A., Meisner, L. F. and O'Connor, S. L. (2000) Normal growth and differentiation in a spontaneously immortalized near-diploid human keratinocyte cell line, NIKS. J. Invest. Dermatol. 114, 444-455. https://doi.org/10.1046/j.1523-1747.2000.00869.x
- Baden, H. P., Kubilus, J., Kvedar, J. C., Steinberg, M. L. and Wolman, S. R. (1987) Isolation and characterization of a spontaneously arising long-lived line of human keratinocytes (NM 1). In Vitro Cell. Dev. Biol. 23, 205-213. https://doi.org/10.1007/BF02623581
- Beausejour, C. M., Krtolica, A., Galimi, F., Narita, M., Lowe, S. W., Yaswen, P. and Campisi, J. (2003) Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J. 22, 4212-4222. https://doi.org/10.1093/emboj/cdg417
- Ben-Porath, I. and Weinberg, R. A. (2004) When cells get stressed: an integrative view of cellular senescence. J. Clin. Invest. 113, 8-13. https://doi.org/10.1172/JCI200420663
- Ben-Porath, I. and Weinberg, R. A. (2005) The signals and pathways activating cellular senescence. Int. J. Biochem. Cell Biol. 37, 961-976. https://doi.org/10.1016/j.biocel.2004.10.013
- Berube, N. G., Smith, J. R. and Pereira-Smith, O. M. (1998) The genetics of cellular senescence. Am. J. Hum. Genet. 62, 1015-1019. https://doi.org/10.1086/301848
- Bodnar, A. G., Ouellette, M., Frolkis, M., Holt, S. E., Chiu, C. P., Morin, G. B., Harley, C. B., Shay, J. W., Lichtsteiner, S. and Wright, W. E. (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349-352. https://doi.org/10.1126/science.279.5349.349
- Boukamp, P., Petrussevska, R. T., Breitkreutz, D., Hornung, J., Markham, A. and Fusenig, N. E. (1988) Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J. Cell Biol. 106, 761-771. https://doi.org/10.1083/jcb.106.3.761
- Bringold, F. and Serrano, M. (2000) Tumor suppressors and oncogenes in cellular senescence. Exp. Gerontol. 35, 317-329. https://doi.org/10.1016/S0531-5565(00)00083-8
- Carnero, A., Hudson, J. D., Price, C. M. and Beach, D. H. (2000) p16INK4A and p19ARF act in overlapping pathways in cellular immortalization. Nat. Cell Biol. 2, 148-155. https://doi.org/10.1038/35004020
- Chapman, S., Liu, X., Meyers, C., Schlegel, R. and McBride, A. A. (2010) Human keratinocytes are efficiently immortalized by a Rho kinase inhibitor. J. Clin. Invest. 120, 2619-2626. https://doi.org/10.1172/JCI42297
- Coates, P. J. (2002) Markers of senescence? J. Pathol. 196, 371-373. https://doi.org/10.1002/path.1073
- Cong, Y. S., Wright, W. E. and Shay, J. W. (2002) Human telomerase and its regulation. Microbiol. Mol. Biol. Rev. 66, 407-425. https://doi.org/10.1128/MMBR.66.3.407-425.2002
- Cowling, V. H. and Cole, M. D. (2007) E-cadherin repression contributes to c-Myc-induced epithelial cell transformation. Oncogene. 26, 3582-3586. https://doi.org/10.1038/sj.onc.1210132
- Cukusic, A., Skrobot Vidacek, N., Sopta, M. and Rubelj, I. (2008) Telomerase regulation at the crossroads of cell fate. Cytogenet. Genome Res. 122, 263-272. https://doi.org/10.1159/000167812
- d'Adda di Fagagna, F., Reaper, P. M., Clay-Farrace, L., Fiegler, H., Carr, P., Von Zglinicki, T., Saretzki, G., Carter, N. P. and Jackson, S. P. (2003) A DNA damage checkpoint response in telomere-initiated senescence. Nature 426, 194-198. https://doi.org/10.1038/nature02118
- De Filippis, L., Ferrari, D., Rota Nodari, L., Amati, B., Snyder, E. and Vescovi, A. L. (2008) Immortalization of human neural stem cells with the c-myc mutant T58A. PLoS One. 3, e3310. https://doi.org/10.1371/journal.pone.0003310
- Dickson, M. A., Hahn, W. C., Ino, Y., Ronfard, V., Wu, J. Y., Weinberg, R. A., Louis, D. N., Li, F. P. and Rheinwald, J. G. (2000) Human keratinocytes that express hTERT and also bypass a p16(INK4a)-enforced mechanism that limits life span become immortal yet retain normal growth and differentiation characteristics. Mol. Cell. Biol. 20, 1436-1447. https://doi.org/10.1128/MCB.20.4.1436-1447.2000
- Dimri, G. P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E. E., Linskens, M., Rubelj, I., Pereira-Smith, O. and et al. (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. U.S.A. 92, 9363-9367. https://doi.org/10.1073/pnas.92.20.9363
- Drayton, S. and Peters, G. (2002) Immortalisation and transformation revisited. Curr. Opin. Genet. Dev. 12, 98-104. https://doi.org/10.1016/S0959-437X(01)00271-4
- Durst, M., Dzarlieva-Petrusevska, R. T., Boukamp, P., Fusenig, N. E. and Gissmann, L. (1987) Molecular and cytogenetic analysis of immortalized human primary keratinocytes obtained after transfection with human papillomavirus type 16 DNA. Oncogene 1, 251-256.
- Flores, E. R., Allen-Hoffmann, B. L., Lee, D., Sattler, C. A. and Lambert, P. F. (1999) Establishment of the human papillomavirus type 16 (HPV-16) life cycle in an immortalized human foreskin keratinocyte cell line. Virology 262, 344-354. https://doi.org/10.1006/viro.1999.9868
- Foster, S. A. and Galloway, D. A. (1996) Human papillomavirus type 16 E7 alleviates a proliferation block in early passage human mammary epithelial cells. Oncogene 12, 1773-1779.
- Foster, S. A., Wong, D. J., Barrett, M. T. and Galloway, D. A. (1998) Inactivation of p16 in human mammary epithelial cells by CpG island methylation. Mol. Cell. Biol. 18, 1793-1801. https://doi.org/10.1128/MCB.18.4.1793
- Fridman, A. L. and Tainsky, M. A. (2008) Critical pathways in cellular senescence and immortalization revealed by gene expression profiling. Oncogene. 27, 5975-5987. https://doi.org/10.1038/onc.2008.213
- Fridman, A. L., Tang, L., Kulaeva, O. I., Ye, B., Li, Q., Nahhas, F., Roberts, P. C., Land, S. J., Abrams, J. and Tainsky, M. A. (2006) Expression profiling identifies three pathways altered in cellular immortalization: interferon, cell cycle, and cytoskeleton. J. Gerontol. A. Biol. Sci. Med. Sci. 61, 879-889. https://doi.org/10.1093/gerona/61.9.879
- Greider, C. W. and Blackburn, E. H. (1996) Telomeres, telomerase and cancer. Sci. Am. 274, 92-97. https://doi.org/10.1038/scientificamerican0296-92
- Haga, K., Ohno, S., Yugawa, T., Narisawa-Saito, M., Fujita, M., Sakamoto, M., Galloway, D. A. and Kiyono, T. (2007) Efficient immortalization of primary human cells by p16INK4a-specific short hairpin RNA or Bmi-1, combined with introduction of hTERT. Cancer Sci. 98, 147-154. https://doi.org/10.1111/j.1349-7006.2006.00373.x
- Harley, C. B. (2002) Telomerase is not an oncogene. Oncogene. 21, 494-502. https://doi.org/10.1038/sj.onc.1205076
- Hawley-Nelson, P., Vousden, K. H., Hubbert, N. L., Lowy, D. R. and Schiller, J. T. (1989) HPV16 E6 and E7 proteins cooperate to immortalize human foreskin keratinocytes. EMBO J. 8, 3905-3910.
- Hayflick, L. (1965) The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. 37, 614-636. https://doi.org/10.1016/0014-4827(65)90211-9
- Hayflick, L. and Moorhead, P. S. (1961) The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585-621. https://doi.org/10.1016/0014-4827(61)90192-6
- Herbert, B. S., Wright, W. E. and Shay, J. W. (2002) p16(INK4a) inactivation is not required to immortalize human mammary epithelial cells. Oncogene. 21, 7897-7900. https://doi.org/10.1038/sj.onc.1205902
- Herbig, U., Jobling, W. A., Chen, B. P., Chen, D. J. and Sedivy, J. M. (2004) Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol. Cell. 14, 501-513. https://doi.org/10.1016/S1097-2765(04)00256-4
- Itahana, K., Zou, Y., Itahana, Y., Martinez, J. L., Beausejour, C., Jacobs, J. J., Van Lohuizen, M., Band, V., Campisi, J. and Dimri, G. P. (2003) Control of the replicative life span of human fibroblasts by p16 and the polycomb protein Bmi-1. Mol. Cell. Biol. 23, 389-401. https://doi.org/10.1128/MCB.23.1.389-401.2003
- Jarrard, D. F., Sarkar, S., Shi, Y., Yeager, T. R., Magrane, G., Kinoshita, H., Nassif, N., Meisner, L., Newton, M. A., Waldman, F. M. and Reznikoff, C. A. (1999) p16/pRb pathway alterations are required for bypassing senescence in human prostate epithelial cells. Cancer Res. 59, 2957-2964.
- Jiang, X. R., Jimenez, G., Chang, E., Frolkis, M., Kusler, B., Sage, M., Beeche, M., Bodnar, A. G., Wahl, G. M., Tlsty, T. D. and Chiu, C. P. (1999) Telomerase expression in human somatic cells does not induce changes associated with a transformed phenotype. Nat. Genet. 21, 111-114. https://doi.org/10.1038/5056
- Kim, N. W., Piatyszek, M. A., Prowse, K. R., Harley, C. B., West, M. D., Ho, P. L., Coviello, G. M., Wright, W. E., Weinrich, S. L. and Shay, J. W. (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266, 2011-2015. https://doi.org/10.1126/science.7605428
- Kiyono, T., Foster, S. A., Koop, J. I., McDougall, J. K., Galloway, D. A. and Klingelhutz, A. J. (1998) Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 396, 84-88. https://doi.org/10.1038/23962
- Klingelhutz, A. J., Foster, S. A. and McDougall, J. K. (1996) Telomerase activation by the E6 gene product of human papillomavirus type 16. Nature 380, 79-82. https://doi.org/10.1038/380079a0
- Klingelhutz, A. J. and Roman, A. (2012) Cellular transformation by human papillomaviruses: lessons learned by comparing high- and low-risk viruses. Virology 424, 77-98. https://doi.org/10.1016/j.virol.2011.12.018
- Lee, K. M., Choi, K. H. and Ouellette, M. M. (2004) Use of exogenous hTERT to immortalize primary human cells. Cytotechnology 45, 33-38. https://doi.org/10.1007/10.1007/s10616-004-5123-3
- Lehman, T. A., Modali, R., Boukamp, P., Stanek, J., Bennett, W. P., Welsh, J. A., Metcalf, R. A., Stampfer, M. R., Fusenig, N., Rogan, E. M. and et al. (1993) p53 mutations in human immortalized epithelial cell lines. Carcinogenesis 14, 833-839. https://doi.org/10.1093/carcin/14.5.833
- Liu, X., Ory, V., Chapman, S., Yuan, H., Albanese, C., Kallakury, B., Timofeeva, O. A., Nealon, C., Dakic, A., Simic, V., Haddad, B. R., Rhim, J. S., Dritschilo, A., Riegel, A., McBride, A. and Schlegel, R. (2012) ROCK inhibitor and feeder cells induce the conditional reprogramming of epithelial cells. Am. J. Pathol. 180, 599-607. https://doi.org/10.1016/j.ajpath.2011.10.036
- Lundberg, A. S., Hahn, W. C., Gupta, P. and Weinberg, R. A. (2000) Genes involved in senescence and immortalization. Curr. Opin. Cell Biol. 12, 705-709. https://doi.org/10.1016/S0955-0674(00)00155-1
- Masutomi, K., Yu, E. Y., Khurts, S., Ben-Porath, I., Currier, J. L., Metz, G. B., Brooks, M. W., Kaneko, S., Murakami, S., DeCaprio, J. A., Weinberg, R. A., Stewart, S. A. and Hahn, W. C. (2003) Telomerase maintains telomere structure in normal human cells. Cell 114, 241-253. https://doi.org/10.1016/S0092-8674(03)00550-6
- Maurelli, R., Zambruno, G., Guerra, L., Abbruzzese, C., Dimri, G., Gellini, M., Bondanza, S. and Dellambra, E. (2006) Inactivation of p16INK4a (inhibitor of cyclin-dependent kinase 4A) immortalizes primary human keratinocytes by maintaining cells in the stem cell compartment. FASEB J. 20, 1516-1518. https://doi.org/10.1096/fj.05-4480fje
- Miller, J., Dakic, A., Chen, R., Palechor-Ceron, N., Dai, Y., Kallakury, B., Schlegel, R. and Liu, X. (2013) HPV16 E7 protein and hTERT proteins defective for telomere maintenance cooperate to immortalize human keratinocytes. PLoS Pathog. 9, e1003284. https://doi.org/10.1371/journal.ppat.1003284
- Morales, C. P., Holt, S. E., Ouellette, M., Kaur, K. J., Yan, Y., Wilson, K. S., White, M. A., Wright, W. E. and Shay, J. W. (1999) Absence of cancer-associated changes in human fibroblasts immortalized with telomerase. Nat. Genet. 21, 115-118. https://doi.org/10.1038/5063
- Munro, J., Stott, F. J., Vousden, K. H., Peters, G. and Parkinson, E. K. (1999) Role of the alternative INK4A proteins in human keratinocyte senescence: evidence for the specific inactivation of p16INK4A upon immortalization. Cancer Res. 59, 2516-2521.
- Narita, M., Nunez, S., Heard, E., Lin, A. W., Hearn, S. A., Spector, D. L., Hannon, G. J. and Lowe, S. W. (2003) Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113, 703-716. https://doi.org/10.1016/S0092-8674(03)00401-X
- Neumeister, P., Albanese, C., Balent, B., Greally, J. and Pestell, R. G. (2002) Senescence and epigenetic dysregulation in cancer. Int. J. Biochem. Cell Biol. 34, 1475-1490. https://doi.org/10.1016/S1357-2725(02)00079-1
- Ohtani, N., Mann, D. J. and Hara, E. (2009) Cellular senescence: its role in tumor suppression and aging. Cancer Sci. 100, 792-797. https://doi.org/10.1111/j.1349-7006.2009.01123.x
- Ouellette, M. M., McDaniel, L. D., Wright, W. E., Shay, J. W. and Schultz, R. A. (2000) The establishment of telomerase-immortalized cell lines representing human chromosome instability syndromes. Hum. Mol. Genet. 9, 403-411. https://doi.org/10.1093/hmg/9.3.403
- Ozbun, M. A. and Patterson, N. A. (2014) Using organotypic (raft) epithelial tissue cultures for the biosynthesis and isolation of infectious human papillomaviruses. Curr. Protoc. Microbiol. 34, 14B.3.1-14B.3.18.
- Palmero, I., Pantoja, C. and Serrano, M. (1998) p19ARF links the tumour suppressor p53 to Ras. Nature 395, 125-126. https://doi.org/10.1038/25870
- Ramirez, R. D., Herbert, B. S., Vaughan, M. B., Zou, Y., Gandia, K., Morales, C. P., Wright, W. E. and Shay, J. W. (2003) Bypass of telomere-dependent replicative senescence (M1) upon overexpression of Cdk4 in normal human epithelial cells. Oncogene. 22, 433-444. https://doi.org/10.1038/sj.onc.1206046
- Rangarajan, A., Hong, S. J., Gifford, A. and Weinberg, R. A. (2004) Species- and cell type-specific requirements for cellular transformation. Cancer Cell 6, 171-183. https://doi.org/10.1016/j.ccr.2004.07.009
- Ratsch, S. B., Gao, Q., Srinivasan, S., Wazer, D. E. and Band, V. (2001) Multiple genetic changes are required for efficient immortalization of different subtypes of normal human mammary epithelial cells. Radiat. Res. 155, 143-150. https://doi.org/10.1667/0033-7587(2001)155[0143:MGCARF]2.0.CO;2
- Rheinwald, J. G., Hahn, W. C., Ramsey, M. R., Wu, J. Y., Guo, Z., Tsao, H., De Luca, M., Catricala, C. and O'Toole, K. M. (2002) A two-stage, p16(INK4A)- and p53-dependent keratinocyte senescence mechanism that limits replicative potential independent of telomere status. Mol. Cell. Biol. 22, 5157-5172. https://doi.org/10.1128/MCB.22.14.5157-5172.2002
- Rocco, J. W. and Sidransky, D. (2001) p16(MTS-1/CDKN2/INK4a) in cancer progression. Exp. Cell Res. 264, 42-55. https://doi.org/10.1006/excr.2000.5149
- Schulz, S., Steinberg, T., Beck, D., Tomakidi, P., Accardi, R., Tommasino, M., Reinhard, T. and Eberwein, P. (2013) Generation and evaluation of a human corneal model cell system for ophthalmologic issues using the HPV16 E6/E7 oncogenes as uniform immortalization platform. Differentiation 85, 161-172. https://doi.org/10.1016/j.diff.2013.06.001
- Serrano, M. and Blasco, M. A. (2001) Putting the stress on senescence. Curr. Opin. Cell Biol. 13, 748-753. https://doi.org/10.1016/S0955-0674(00)00278-7
- Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. and Lowe, S. W. (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593-602. https://doi.org/10.1016/S0092-8674(00)81902-9
- Shay, J. W. and Bacchetti, S. (1997) A survey of telomerase activity in human cancer. Eur. J. Cancer 33, 787-791. https://doi.org/10.1016/S0959-8049(97)00062-2
- Shay, J. W., Wright, W. E., Brasiskyte, D. and Van der Haegen, B. A. (1993) E6 of human papillomavirus type 16 can overcome the M1 stage of immortalization in human mammary epithelial cells but not in human fibroblasts. Oncogene 8, 1407-1413.
- Shelton, D. N., Chang, E., Whittier, P. S., Choi, D. and Funk, W. D. (1999) Microarray analysis of replicative senescence. Curr. Biol. 9, 939-945. https://doi.org/10.1016/S0960-9822(99)80420-5
- Smith, J. R. and Pereira-Smith, O. M. (1996) Replicative senescence: implications for in vivo aging and tumor suppression. Science 273, 63-67. https://doi.org/10.1126/science.273.5271.63
- Smogorzewska, A. and de Lange, T. (2002) Different telomere damage signaling pathways in human and mouse cells. EMBO J. 21, 4338-4348. https://doi.org/10.1093/emboj/cdf433
- Stepanenko, A. A. and Kavsan, V. M. (2012) Immortalization and malignant transformation of eukaryotic Cells. Tsitol. Genet. 46, 36-75.
- Stewart, S. A. and Weinberg, R. A. (2002) Senescence: does it all happen at the ends? Oncogene 21, 627-630. https://doi.org/10.1038/sj.onc.1205062
- Stoppler, H., Hartmann, D. P., Sherman, L. and Schlegel, R. (1997) The human papillomavirus type 16 E6 and E7 oncoproteins dissociate cellular telomerase activity from the maintenance of telomere length. J. Biol. Chem. 272, 13332-13337. https://doi.org/10.1074/jbc.272.20.13332
- Vaziri, H. and Benchimol, S. (1998) Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span. Curr. Biol. 8, 279-282. https://doi.org/10.1016/S0960-9822(98)70109-5
- Veldman, T., Horikawa, I., Barrett, J. C. and Schlegel, R. (2001) Transcriptional activation of the telomerase hTERT gene by human papillomavirus type 16 E6 oncoprotein. J. Virol. 75, 4467-4472. https://doi.org/10.1128/JVI.75.9.4467-4472.2001
- Wazer, D. E., Liu, X. L., Chu, Q., Gao, Q. and Band, V. (1995) Immortalization of distinct human mammary epithelial cell types by human papilloma virus 16 E6 or E7. Proc. Natl. Acad. Sci. U.S.A. 92, 3687-3691. https://doi.org/10.1073/pnas.92.9.3687
- Wong, D. J., Foster, S. A., Galloway, D. A. and Reid, B. J. (1999) Progressive region-specific de novo methylation of the p16 CpG island in primary human mammary epithelial cell strains during escape from M(0) growth arrest. Mol. Cell. Biol. 19, 5642-5651. https://doi.org/10.1128/MCB.19.8.5642
- Yang, J., Chang, E., Cherry, A. M., Bangs, C. D., Oei, Y., Bodnar, A., Bronstein, A., Chiu, C. P. and Herron, G. S. (1999) Human endothelial cell life extension by telomerase expression. J. Biol. Chem. 274, 26141-26148. https://doi.org/10.1074/jbc.274.37.26141
- Yudoh, K., Matsuno, H., Nakazawa, F., Katayama, R. and Kimura, T. (2001) Reconstituting telomerase activity using the telomerase catalytic subunit prevents the telomere shorting and replicative senescence in human osteoblasts. J. Bone Miner. Res. 16, 1453-1464. https://doi.org/10.1359/jbmr.2001.16.8.1453
Cited by
- EPR Technology as Sensitive Method for Oxidative Stress Detection in Primary and Secondary Keratinocytes Induced by Two Selected Nanoparticles 2017, https://doi.org/10.1007/s12013-017-0823-4
- Establishment and evaluation of immortalized human epidermal keratinocytes for an alternative skin irritation test vol.88, 2017, https://doi.org/10.1016/j.vascn.2017.08.005
- Establishment of Immortalized Primary Human Foreskin Keratinocytes and Their Application to Toxicity Assessment and Three Dimensional Skin Culture Construction vol.25, pp.3, 2017, https://doi.org/10.4062/biomolther.2017.043
- The Impact of Sunlight on Skin Aging pp.2196-7865, 2018, https://doi.org/10.1007/s13670-018-0262-0
- Establishment of keratinocyte cell lines from human hair follicles vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-31829-0
- Hyperthermia induces therapeutic effectiveness and potentiates adjuvant therapy with non-targeted and targeted drugs in an in vitro model of human malignant melanoma vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-29018-0
- 피부각질세포에서 치자백피탕(梔子柏皮湯)의 아토피 피부염 개선효과 vol.32, pp.4, 2018, https://doi.org/10.15188/kjopp.2018.08.32.4.226
- Novel Docosahexaenoic Acid Ester of Phloridzin Inhibits Proliferation and Triggers Apoptosis in an In Vitro Model of Skin Cancer vol.7, pp.12, 2015, https://doi.org/10.3390/antiox7120188
- Cristazine, a novel dioxopiperazine alkaloid, induces apoptosis via the death receptor pathway in A431 cells vol.80, pp.4, 2015, https://doi.org/10.1002/ddr.21527
- Long-term expansion and differentiation of adult murine epidermal stem cells in 3D organoid cultures vol.116, pp.29, 2015, https://doi.org/10.1073/pnas.1715272116
- Immortalizing Mesenchymal Stromal Cells from Aged Donors While Keeping Their Essential Features vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/5726947
- Immortalization and Characterization of Rat Lingual Keratinocytes in a High-Calcium and Feeder-Free Culture System Using ROCK Inhibitor Y-27632 vol.22, pp.13, 2015, https://doi.org/10.3390/ijms22136782
- Generation, Characterization, and Application of Inducible Proliferative Adult Human Epicardium-Derived Cells vol.10, pp.8, 2021, https://doi.org/10.3390/cells10082064
- Electrospun Poly(ethylene Terephthalate)/Silk Fibroin Composite for Filtration Application vol.13, pp.15, 2021, https://doi.org/10.3390/polym13152499
- 3D cell culture using a clinostat reproduces microgravity-induced skin changes vol.7, pp.1, 2015, https://doi.org/10.1038/s41526-021-00148-6
- Restoration of keratinocytic phenotypes in autonomous trisomy-rescued cells vol.12, pp.1, 2015, https://doi.org/10.1186/s13287-021-02448-w