DOI QR코드

DOI QR Code

Immortalization of Primary Keratinocytes and Its Application to Skin Research

  • Choi, Moonju (College of Pharmacy, Dongguk University-Seoul) ;
  • Lee, Choongho (College of Pharmacy, Dongguk University-Seoul)
  • Received : 2015.04.07
  • Accepted : 2015.05.06
  • Published : 2015.09.01

Abstract

As a major component of the epidermal tissue, a primary keratinocyte has served as an essential tool not only for the study of pathogenesis of skin-related diseases but also for the assessment of potential toxicities of various chemicals used in cosmetics. However, its short lifespan in ex vivo setting has been a great hurdle for many practical applications. Therefore, a number of immortalization attempts have been made with success to overcome this limitation. In order to understand the immortalization process of a primary keratinocyte, several key biological phenomena governing its lifespan will be reviewed first. Then, various immortalization methods for the establishment of stable keratinocyte cell lines will be explained. Finally, its application to a three-dimensional skin culture system will be described.

Keywords

References

  1. Allen-Hoffmann, B. L., Schlosser, S. J., Ivarie, C. A., Sattler, C. A., Meisner, L. F. and O'Connor, S. L. (2000) Normal growth and differentiation in a spontaneously immortalized near-diploid human keratinocyte cell line, NIKS. J. Invest. Dermatol. 114, 444-455. https://doi.org/10.1046/j.1523-1747.2000.00869.x
  2. Baden, H. P., Kubilus, J., Kvedar, J. C., Steinberg, M. L. and Wolman, S. R. (1987) Isolation and characterization of a spontaneously arising long-lived line of human keratinocytes (NM 1). In Vitro Cell. Dev. Biol. 23, 205-213. https://doi.org/10.1007/BF02623581
  3. Beausejour, C. M., Krtolica, A., Galimi, F., Narita, M., Lowe, S. W., Yaswen, P. and Campisi, J. (2003) Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J. 22, 4212-4222. https://doi.org/10.1093/emboj/cdg417
  4. Ben-Porath, I. and Weinberg, R. A. (2004) When cells get stressed: an integrative view of cellular senescence. J. Clin. Invest. 113, 8-13. https://doi.org/10.1172/JCI200420663
  5. Ben-Porath, I. and Weinberg, R. A. (2005) The signals and pathways activating cellular senescence. Int. J. Biochem. Cell Biol. 37, 961-976. https://doi.org/10.1016/j.biocel.2004.10.013
  6. Berube, N. G., Smith, J. R. and Pereira-Smith, O. M. (1998) The genetics of cellular senescence. Am. J. Hum. Genet. 62, 1015-1019. https://doi.org/10.1086/301848
  7. Bodnar, A. G., Ouellette, M., Frolkis, M., Holt, S. E., Chiu, C. P., Morin, G. B., Harley, C. B., Shay, J. W., Lichtsteiner, S. and Wright, W. E. (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349-352. https://doi.org/10.1126/science.279.5349.349
  8. Boukamp, P., Petrussevska, R. T., Breitkreutz, D., Hornung, J., Markham, A. and Fusenig, N. E. (1988) Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J. Cell Biol. 106, 761-771. https://doi.org/10.1083/jcb.106.3.761
  9. Bringold, F. and Serrano, M. (2000) Tumor suppressors and oncogenes in cellular senescence. Exp. Gerontol. 35, 317-329. https://doi.org/10.1016/S0531-5565(00)00083-8
  10. Carnero, A., Hudson, J. D., Price, C. M. and Beach, D. H. (2000) p16INK4A and p19ARF act in overlapping pathways in cellular immortalization. Nat. Cell Biol. 2, 148-155. https://doi.org/10.1038/35004020
  11. Chapman, S., Liu, X., Meyers, C., Schlegel, R. and McBride, A. A. (2010) Human keratinocytes are efficiently immortalized by a Rho kinase inhibitor. J. Clin. Invest. 120, 2619-2626. https://doi.org/10.1172/JCI42297
  12. Coates, P. J. (2002) Markers of senescence? J. Pathol. 196, 371-373. https://doi.org/10.1002/path.1073
  13. Cong, Y. S., Wright, W. E. and Shay, J. W. (2002) Human telomerase and its regulation. Microbiol. Mol. Biol. Rev. 66, 407-425. https://doi.org/10.1128/MMBR.66.3.407-425.2002
  14. Cowling, V. H. and Cole, M. D. (2007) E-cadherin repression contributes to c-Myc-induced epithelial cell transformation. Oncogene. 26, 3582-3586. https://doi.org/10.1038/sj.onc.1210132
  15. Cukusic, A., Skrobot Vidacek, N., Sopta, M. and Rubelj, I. (2008) Telomerase regulation at the crossroads of cell fate. Cytogenet. Genome Res. 122, 263-272. https://doi.org/10.1159/000167812
  16. d'Adda di Fagagna, F., Reaper, P. M., Clay-Farrace, L., Fiegler, H., Carr, P., Von Zglinicki, T., Saretzki, G., Carter, N. P. and Jackson, S. P. (2003) A DNA damage checkpoint response in telomere-initiated senescence. Nature 426, 194-198. https://doi.org/10.1038/nature02118
  17. De Filippis, L., Ferrari, D., Rota Nodari, L., Amati, B., Snyder, E. and Vescovi, A. L. (2008) Immortalization of human neural stem cells with the c-myc mutant T58A. PLoS One. 3, e3310. https://doi.org/10.1371/journal.pone.0003310
  18. Dickson, M. A., Hahn, W. C., Ino, Y., Ronfard, V., Wu, J. Y., Weinberg, R. A., Louis, D. N., Li, F. P. and Rheinwald, J. G. (2000) Human keratinocytes that express hTERT and also bypass a p16(INK4a)-enforced mechanism that limits life span become immortal yet retain normal growth and differentiation characteristics. Mol. Cell. Biol. 20, 1436-1447. https://doi.org/10.1128/MCB.20.4.1436-1447.2000
  19. Dimri, G. P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E. E., Linskens, M., Rubelj, I., Pereira-Smith, O. and et al. (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. U.S.A. 92, 9363-9367. https://doi.org/10.1073/pnas.92.20.9363
  20. Drayton, S. and Peters, G. (2002) Immortalisation and transformation revisited. Curr. Opin. Genet. Dev. 12, 98-104. https://doi.org/10.1016/S0959-437X(01)00271-4
  21. Durst, M., Dzarlieva-Petrusevska, R. T., Boukamp, P., Fusenig, N. E. and Gissmann, L. (1987) Molecular and cytogenetic analysis of immortalized human primary keratinocytes obtained after transfection with human papillomavirus type 16 DNA. Oncogene 1, 251-256.
  22. Flores, E. R., Allen-Hoffmann, B. L., Lee, D., Sattler, C. A. and Lambert, P. F. (1999) Establishment of the human papillomavirus type 16 (HPV-16) life cycle in an immortalized human foreskin keratinocyte cell line. Virology 262, 344-354. https://doi.org/10.1006/viro.1999.9868
  23. Foster, S. A. and Galloway, D. A. (1996) Human papillomavirus type 16 E7 alleviates a proliferation block in early passage human mammary epithelial cells. Oncogene 12, 1773-1779.
  24. Foster, S. A., Wong, D. J., Barrett, M. T. and Galloway, D. A. (1998) Inactivation of p16 in human mammary epithelial cells by CpG island methylation. Mol. Cell. Biol. 18, 1793-1801. https://doi.org/10.1128/MCB.18.4.1793
  25. Fridman, A. L. and Tainsky, M. A. (2008) Critical pathways in cellular senescence and immortalization revealed by gene expression profiling. Oncogene. 27, 5975-5987. https://doi.org/10.1038/onc.2008.213
  26. Fridman, A. L., Tang, L., Kulaeva, O. I., Ye, B., Li, Q., Nahhas, F., Roberts, P. C., Land, S. J., Abrams, J. and Tainsky, M. A. (2006) Expression profiling identifies three pathways altered in cellular immortalization: interferon, cell cycle, and cytoskeleton. J. Gerontol. A. Biol. Sci. Med. Sci. 61, 879-889. https://doi.org/10.1093/gerona/61.9.879
  27. Greider, C. W. and Blackburn, E. H. (1996) Telomeres, telomerase and cancer. Sci. Am. 274, 92-97. https://doi.org/10.1038/scientificamerican0296-92
  28. Haga, K., Ohno, S., Yugawa, T., Narisawa-Saito, M., Fujita, M., Sakamoto, M., Galloway, D. A. and Kiyono, T. (2007) Efficient immortalization of primary human cells by p16INK4a-specific short hairpin RNA or Bmi-1, combined with introduction of hTERT. Cancer Sci. 98, 147-154. https://doi.org/10.1111/j.1349-7006.2006.00373.x
  29. Harley, C. B. (2002) Telomerase is not an oncogene. Oncogene. 21, 494-502. https://doi.org/10.1038/sj.onc.1205076
  30. Hawley-Nelson, P., Vousden, K. H., Hubbert, N. L., Lowy, D. R. and Schiller, J. T. (1989) HPV16 E6 and E7 proteins cooperate to immortalize human foreskin keratinocytes. EMBO J. 8, 3905-3910.
  31. Hayflick, L. (1965) The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. 37, 614-636. https://doi.org/10.1016/0014-4827(65)90211-9
  32. Hayflick, L. and Moorhead, P. S. (1961) The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585-621. https://doi.org/10.1016/0014-4827(61)90192-6
  33. Herbert, B. S., Wright, W. E. and Shay, J. W. (2002) p16(INK4a) inactivation is not required to immortalize human mammary epithelial cells. Oncogene. 21, 7897-7900. https://doi.org/10.1038/sj.onc.1205902
  34. Herbig, U., Jobling, W. A., Chen, B. P., Chen, D. J. and Sedivy, J. M. (2004) Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol. Cell. 14, 501-513. https://doi.org/10.1016/S1097-2765(04)00256-4
  35. Itahana, K., Zou, Y., Itahana, Y., Martinez, J. L., Beausejour, C., Jacobs, J. J., Van Lohuizen, M., Band, V., Campisi, J. and Dimri, G. P. (2003) Control of the replicative life span of human fibroblasts by p16 and the polycomb protein Bmi-1. Mol. Cell. Biol. 23, 389-401. https://doi.org/10.1128/MCB.23.1.389-401.2003
  36. Jarrard, D. F., Sarkar, S., Shi, Y., Yeager, T. R., Magrane, G., Kinoshita, H., Nassif, N., Meisner, L., Newton, M. A., Waldman, F. M. and Reznikoff, C. A. (1999) p16/pRb pathway alterations are required for bypassing senescence in human prostate epithelial cells. Cancer Res. 59, 2957-2964.
  37. Jiang, X. R., Jimenez, G., Chang, E., Frolkis, M., Kusler, B., Sage, M., Beeche, M., Bodnar, A. G., Wahl, G. M., Tlsty, T. D. and Chiu, C. P. (1999) Telomerase expression in human somatic cells does not induce changes associated with a transformed phenotype. Nat. Genet. 21, 111-114. https://doi.org/10.1038/5056
  38. Kim, N. W., Piatyszek, M. A., Prowse, K. R., Harley, C. B., West, M. D., Ho, P. L., Coviello, G. M., Wright, W. E., Weinrich, S. L. and Shay, J. W. (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266, 2011-2015. https://doi.org/10.1126/science.7605428
  39. Kiyono, T., Foster, S. A., Koop, J. I., McDougall, J. K., Galloway, D. A. and Klingelhutz, A. J. (1998) Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 396, 84-88. https://doi.org/10.1038/23962
  40. Klingelhutz, A. J., Foster, S. A. and McDougall, J. K. (1996) Telomerase activation by the E6 gene product of human papillomavirus type 16. Nature 380, 79-82. https://doi.org/10.1038/380079a0
  41. Klingelhutz, A. J. and Roman, A. (2012) Cellular transformation by human papillomaviruses: lessons learned by comparing high- and low-risk viruses. Virology 424, 77-98. https://doi.org/10.1016/j.virol.2011.12.018
  42. Lee, K. M., Choi, K. H. and Ouellette, M. M. (2004) Use of exogenous hTERT to immortalize primary human cells. Cytotechnology 45, 33-38. https://doi.org/10.1007/10.1007/s10616-004-5123-3
  43. Lehman, T. A., Modali, R., Boukamp, P., Stanek, J., Bennett, W. P., Welsh, J. A., Metcalf, R. A., Stampfer, M. R., Fusenig, N., Rogan, E. M. and et al. (1993) p53 mutations in human immortalized epithelial cell lines. Carcinogenesis 14, 833-839. https://doi.org/10.1093/carcin/14.5.833
  44. Liu, X., Ory, V., Chapman, S., Yuan, H., Albanese, C., Kallakury, B., Timofeeva, O. A., Nealon, C., Dakic, A., Simic, V., Haddad, B. R., Rhim, J. S., Dritschilo, A., Riegel, A., McBride, A. and Schlegel, R. (2012) ROCK inhibitor and feeder cells induce the conditional reprogramming of epithelial cells. Am. J. Pathol. 180, 599-607. https://doi.org/10.1016/j.ajpath.2011.10.036
  45. Lundberg, A. S., Hahn, W. C., Gupta, P. and Weinberg, R. A. (2000) Genes involved in senescence and immortalization. Curr. Opin. Cell Biol. 12, 705-709. https://doi.org/10.1016/S0955-0674(00)00155-1
  46. Masutomi, K., Yu, E. Y., Khurts, S., Ben-Porath, I., Currier, J. L., Metz, G. B., Brooks, M. W., Kaneko, S., Murakami, S., DeCaprio, J. A., Weinberg, R. A., Stewart, S. A. and Hahn, W. C. (2003) Telomerase maintains telomere structure in normal human cells. Cell 114, 241-253. https://doi.org/10.1016/S0092-8674(03)00550-6
  47. Maurelli, R., Zambruno, G., Guerra, L., Abbruzzese, C., Dimri, G., Gellini, M., Bondanza, S. and Dellambra, E. (2006) Inactivation of p16INK4a (inhibitor of cyclin-dependent kinase 4A) immortalizes primary human keratinocytes by maintaining cells in the stem cell compartment. FASEB J. 20, 1516-1518. https://doi.org/10.1096/fj.05-4480fje
  48. Miller, J., Dakic, A., Chen, R., Palechor-Ceron, N., Dai, Y., Kallakury, B., Schlegel, R. and Liu, X. (2013) HPV16 E7 protein and hTERT proteins defective for telomere maintenance cooperate to immortalize human keratinocytes. PLoS Pathog. 9, e1003284. https://doi.org/10.1371/journal.ppat.1003284
  49. Morales, C. P., Holt, S. E., Ouellette, M., Kaur, K. J., Yan, Y., Wilson, K. S., White, M. A., Wright, W. E. and Shay, J. W. (1999) Absence of cancer-associated changes in human fibroblasts immortalized with telomerase. Nat. Genet. 21, 115-118. https://doi.org/10.1038/5063
  50. Munro, J., Stott, F. J., Vousden, K. H., Peters, G. and Parkinson, E. K. (1999) Role of the alternative INK4A proteins in human keratinocyte senescence: evidence for the specific inactivation of p16INK4A upon immortalization. Cancer Res. 59, 2516-2521.
  51. Narita, M., Nunez, S., Heard, E., Lin, A. W., Hearn, S. A., Spector, D. L., Hannon, G. J. and Lowe, S. W. (2003) Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113, 703-716. https://doi.org/10.1016/S0092-8674(03)00401-X
  52. Neumeister, P., Albanese, C., Balent, B., Greally, J. and Pestell, R. G. (2002) Senescence and epigenetic dysregulation in cancer. Int. J. Biochem. Cell Biol. 34, 1475-1490. https://doi.org/10.1016/S1357-2725(02)00079-1
  53. Ohtani, N., Mann, D. J. and Hara, E. (2009) Cellular senescence: its role in tumor suppression and aging. Cancer Sci. 100, 792-797. https://doi.org/10.1111/j.1349-7006.2009.01123.x
  54. Ouellette, M. M., McDaniel, L. D., Wright, W. E., Shay, J. W. and Schultz, R. A. (2000) The establishment of telomerase-immortalized cell lines representing human chromosome instability syndromes. Hum. Mol. Genet. 9, 403-411. https://doi.org/10.1093/hmg/9.3.403
  55. Ozbun, M. A. and Patterson, N. A. (2014) Using organotypic (raft) epithelial tissue cultures for the biosynthesis and isolation of infectious human papillomaviruses. Curr. Protoc. Microbiol. 34, 14B.3.1-14B.3.18.
  56. Palmero, I., Pantoja, C. and Serrano, M. (1998) p19ARF links the tumour suppressor p53 to Ras. Nature 395, 125-126. https://doi.org/10.1038/25870
  57. Ramirez, R. D., Herbert, B. S., Vaughan, M. B., Zou, Y., Gandia, K., Morales, C. P., Wright, W. E. and Shay, J. W. (2003) Bypass of telomere-dependent replicative senescence (M1) upon overexpression of Cdk4 in normal human epithelial cells. Oncogene. 22, 433-444. https://doi.org/10.1038/sj.onc.1206046
  58. Rangarajan, A., Hong, S. J., Gifford, A. and Weinberg, R. A. (2004) Species- and cell type-specific requirements for cellular transformation. Cancer Cell 6, 171-183. https://doi.org/10.1016/j.ccr.2004.07.009
  59. Ratsch, S. B., Gao, Q., Srinivasan, S., Wazer, D. E. and Band, V. (2001) Multiple genetic changes are required for efficient immortalization of different subtypes of normal human mammary epithelial cells. Radiat. Res. 155, 143-150. https://doi.org/10.1667/0033-7587(2001)155[0143:MGCARF]2.0.CO;2
  60. Rheinwald, J. G., Hahn, W. C., Ramsey, M. R., Wu, J. Y., Guo, Z., Tsao, H., De Luca, M., Catricala, C. and O'Toole, K. M. (2002) A two-stage, p16(INK4A)- and p53-dependent keratinocyte senescence mechanism that limits replicative potential independent of telomere status. Mol. Cell. Biol. 22, 5157-5172. https://doi.org/10.1128/MCB.22.14.5157-5172.2002
  61. Rocco, J. W. and Sidransky, D. (2001) p16(MTS-1/CDKN2/INK4a) in cancer progression. Exp. Cell Res. 264, 42-55. https://doi.org/10.1006/excr.2000.5149
  62. Schulz, S., Steinberg, T., Beck, D., Tomakidi, P., Accardi, R., Tommasino, M., Reinhard, T. and Eberwein, P. (2013) Generation and evaluation of a human corneal model cell system for ophthalmologic issues using the HPV16 E6/E7 oncogenes as uniform immortalization platform. Differentiation 85, 161-172. https://doi.org/10.1016/j.diff.2013.06.001
  63. Serrano, M. and Blasco, M. A. (2001) Putting the stress on senescence. Curr. Opin. Cell Biol. 13, 748-753. https://doi.org/10.1016/S0955-0674(00)00278-7
  64. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. and Lowe, S. W. (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593-602. https://doi.org/10.1016/S0092-8674(00)81902-9
  65. Shay, J. W. and Bacchetti, S. (1997) A survey of telomerase activity in human cancer. Eur. J. Cancer 33, 787-791. https://doi.org/10.1016/S0959-8049(97)00062-2
  66. Shay, J. W., Wright, W. E., Brasiskyte, D. and Van der Haegen, B. A. (1993) E6 of human papillomavirus type 16 can overcome the M1 stage of immortalization in human mammary epithelial cells but not in human fibroblasts. Oncogene 8, 1407-1413.
  67. Shelton, D. N., Chang, E., Whittier, P. S., Choi, D. and Funk, W. D. (1999) Microarray analysis of replicative senescence. Curr. Biol. 9, 939-945. https://doi.org/10.1016/S0960-9822(99)80420-5
  68. Smith, J. R. and Pereira-Smith, O. M. (1996) Replicative senescence: implications for in vivo aging and tumor suppression. Science 273, 63-67. https://doi.org/10.1126/science.273.5271.63
  69. Smogorzewska, A. and de Lange, T. (2002) Different telomere damage signaling pathways in human and mouse cells. EMBO J. 21, 4338-4348. https://doi.org/10.1093/emboj/cdf433
  70. Stepanenko, A. A. and Kavsan, V. M. (2012) Immortalization and malignant transformation of eukaryotic Cells. Tsitol. Genet. 46, 36-75.
  71. Stewart, S. A. and Weinberg, R. A. (2002) Senescence: does it all happen at the ends? Oncogene 21, 627-630. https://doi.org/10.1038/sj.onc.1205062
  72. Stoppler, H., Hartmann, D. P., Sherman, L. and Schlegel, R. (1997) The human papillomavirus type 16 E6 and E7 oncoproteins dissociate cellular telomerase activity from the maintenance of telomere length. J. Biol. Chem. 272, 13332-13337. https://doi.org/10.1074/jbc.272.20.13332
  73. Vaziri, H. and Benchimol, S. (1998) Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span. Curr. Biol. 8, 279-282. https://doi.org/10.1016/S0960-9822(98)70109-5
  74. Veldman, T., Horikawa, I., Barrett, J. C. and Schlegel, R. (2001) Transcriptional activation of the telomerase hTERT gene by human papillomavirus type 16 E6 oncoprotein. J. Virol. 75, 4467-4472. https://doi.org/10.1128/JVI.75.9.4467-4472.2001
  75. Wazer, D. E., Liu, X. L., Chu, Q., Gao, Q. and Band, V. (1995) Immortalization of distinct human mammary epithelial cell types by human papilloma virus 16 E6 or E7. Proc. Natl. Acad. Sci. U.S.A. 92, 3687-3691. https://doi.org/10.1073/pnas.92.9.3687
  76. Wong, D. J., Foster, S. A., Galloway, D. A. and Reid, B. J. (1999) Progressive region-specific de novo methylation of the p16 CpG island in primary human mammary epithelial cell strains during escape from M(0) growth arrest. Mol. Cell. Biol. 19, 5642-5651. https://doi.org/10.1128/MCB.19.8.5642
  77. Yang, J., Chang, E., Cherry, A. M., Bangs, C. D., Oei, Y., Bodnar, A., Bronstein, A., Chiu, C. P. and Herron, G. S. (1999) Human endothelial cell life extension by telomerase expression. J. Biol. Chem. 274, 26141-26148. https://doi.org/10.1074/jbc.274.37.26141
  78. Yudoh, K., Matsuno, H., Nakazawa, F., Katayama, R. and Kimura, T. (2001) Reconstituting telomerase activity using the telomerase catalytic subunit prevents the telomere shorting and replicative senescence in human osteoblasts. J. Bone Miner. Res. 16, 1453-1464. https://doi.org/10.1359/jbmr.2001.16.8.1453

Cited by

  1. EPR Technology as Sensitive Method for Oxidative Stress Detection in Primary and Secondary Keratinocytes Induced by Two Selected Nanoparticles 2017, https://doi.org/10.1007/s12013-017-0823-4
  2. Establishment and evaluation of immortalized human epidermal keratinocytes for an alternative skin irritation test vol.88, 2017, https://doi.org/10.1016/j.vascn.2017.08.005
  3. Establishment of Immortalized Primary Human Foreskin Keratinocytes and Their Application to Toxicity Assessment and Three Dimensional Skin Culture Construction vol.25, pp.3, 2017, https://doi.org/10.4062/biomolther.2017.043
  4. The Impact of Sunlight on Skin Aging pp.2196-7865, 2018, https://doi.org/10.1007/s13670-018-0262-0
  5. Establishment of keratinocyte cell lines from human hair follicles vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-31829-0
  6. Hyperthermia induces therapeutic effectiveness and potentiates adjuvant therapy with non-targeted and targeted drugs in an in vitro model of human malignant melanoma vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-29018-0
  7. 피부각질세포에서 치자백피탕(梔子柏皮湯)의 아토피 피부염 개선효과 vol.32, pp.4, 2018, https://doi.org/10.15188/kjopp.2018.08.32.4.226
  8. Novel Docosahexaenoic Acid Ester of Phloridzin Inhibits Proliferation and Triggers Apoptosis in an In Vitro Model of Skin Cancer vol.7, pp.12, 2015, https://doi.org/10.3390/antiox7120188
  9. Cristazine, a novel dioxopiperazine alkaloid, induces apoptosis via the death receptor pathway in A431 cells vol.80, pp.4, 2015, https://doi.org/10.1002/ddr.21527
  10. Long-term expansion and differentiation of adult murine epidermal stem cells in 3D organoid cultures vol.116, pp.29, 2015, https://doi.org/10.1073/pnas.1715272116
  11. Immortalizing Mesenchymal Stromal Cells from Aged Donors While Keeping Their Essential Features vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/5726947
  12. Immortalization and Characterization of Rat Lingual Keratinocytes in a High-Calcium and Feeder-Free Culture System Using ROCK Inhibitor Y-27632 vol.22, pp.13, 2015, https://doi.org/10.3390/ijms22136782
  13. Generation, Characterization, and Application of Inducible Proliferative Adult Human Epicardium-Derived Cells vol.10, pp.8, 2021, https://doi.org/10.3390/cells10082064
  14. Electrospun Poly(ethylene Terephthalate)/Silk Fibroin Composite for Filtration Application vol.13, pp.15, 2021, https://doi.org/10.3390/polym13152499
  15. 3D cell culture using a clinostat reproduces microgravity-induced skin changes vol.7, pp.1, 2015, https://doi.org/10.1038/s41526-021-00148-6
  16. Restoration of keratinocytic phenotypes in autonomous trisomy-rescued cells vol.12, pp.1, 2015, https://doi.org/10.1186/s13287-021-02448-w