Browse > Article
http://dx.doi.org/10.4062/biomolther.2015.038

Immortalization of Primary Keratinocytes and Its Application to Skin Research  

Choi, Moonju (College of Pharmacy, Dongguk University-Seoul)
Lee, Choongho (College of Pharmacy, Dongguk University-Seoul)
Publication Information
Biomolecules & Therapeutics / v.23, no.5, 2015 , pp. 391-399 More about this Journal
Abstract
As a major component of the epidermal tissue, a primary keratinocyte has served as an essential tool not only for the study of pathogenesis of skin-related diseases but also for the assessment of potential toxicities of various chemicals used in cosmetics. However, its short lifespan in ex vivo setting has been a great hurdle for many practical applications. Therefore, a number of immortalization attempts have been made with success to overcome this limitation. In order to understand the immortalization process of a primary keratinocyte, several key biological phenomena governing its lifespan will be reviewed first. Then, various immortalization methods for the establishment of stable keratinocyte cell lines will be explained. Finally, its application to a three-dimensional skin culture system will be described.
Keywords
Primary keratinocyte; Lifespan; Senescence; Immortalization; Skin research; Three-dimensional skin culture;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Morales, C. P., Holt, S. E., Ouellette, M., Kaur, K. J., Yan, Y., Wilson, K. S., White, M. A., Wright, W. E. and Shay, J. W. (1999) Absence of cancer-associated changes in human fibroblasts immortalized with telomerase. Nat. Genet. 21, 115-118.   DOI
2 Munro, J., Stott, F. J., Vousden, K. H., Peters, G. and Parkinson, E. K. (1999) Role of the alternative INK4A proteins in human keratinocyte senescence: evidence for the specific inactivation of p16INK4A upon immortalization. Cancer Res. 59, 2516-2521.
3 Narita, M., Nunez, S., Heard, E., Lin, A. W., Hearn, S. A., Spector, D. L., Hannon, G. J. and Lowe, S. W. (2003) Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113, 703-716.   DOI
4 Neumeister, P., Albanese, C., Balent, B., Greally, J. and Pestell, R. G. (2002) Senescence and epigenetic dysregulation in cancer. Int. J. Biochem. Cell Biol. 34, 1475-1490.   DOI
5 Ohtani, N., Mann, D. J. and Hara, E. (2009) Cellular senescence: its role in tumor suppression and aging. Cancer Sci. 100, 792-797.   DOI
6 Ouellette, M. M., McDaniel, L. D., Wright, W. E., Shay, J. W. and Schultz, R. A. (2000) The establishment of telomerase-immortalized cell lines representing human chromosome instability syndromes. Hum. Mol. Genet. 9, 403-411.   DOI
7 Ozbun, M. A. and Patterson, N. A. (2014) Using organotypic (raft) epithelial tissue cultures for the biosynthesis and isolation of infectious human papillomaviruses. Curr. Protoc. Microbiol. 34, 14B.3.1-14B.3.18.
8 Palmero, I., Pantoja, C. and Serrano, M. (1998) p19ARF links the tumour suppressor p53 to Ras. Nature 395, 125-126.   DOI
9 Ramirez, R. D., Herbert, B. S., Vaughan, M. B., Zou, Y., Gandia, K., Morales, C. P., Wright, W. E. and Shay, J. W. (2003) Bypass of telomere-dependent replicative senescence (M1) upon overexpression of Cdk4 in normal human epithelial cells. Oncogene. 22, 433-444.   DOI
10 Rangarajan, A., Hong, S. J., Gifford, A. and Weinberg, R. A. (2004) Species- and cell type-specific requirements for cellular transformation. Cancer Cell 6, 171-183.   DOI
11 Ratsch, S. B., Gao, Q., Srinivasan, S., Wazer, D. E. and Band, V. (2001) Multiple genetic changes are required for efficient immortalization of different subtypes of normal human mammary epithelial cells. Radiat. Res. 155, 143-150.   DOI
12 Rheinwald, J. G., Hahn, W. C., Ramsey, M. R., Wu, J. Y., Guo, Z., Tsao, H., De Luca, M., Catricala, C. and O'Toole, K. M. (2002) A two-stage, p16(INK4A)- and p53-dependent keratinocyte senescence mechanism that limits replicative potential independent of telomere status. Mol. Cell. Biol. 22, 5157-5172.   DOI
13 Rocco, J. W. and Sidransky, D. (2001) p16(MTS-1/CDKN2/INK4a) in cancer progression. Exp. Cell Res. 264, 42-55.   DOI
14 Schulz, S., Steinberg, T., Beck, D., Tomakidi, P., Accardi, R., Tommasino, M., Reinhard, T. and Eberwein, P. (2013) Generation and evaluation of a human corneal model cell system for ophthalmologic issues using the HPV16 E6/E7 oncogenes as uniform immortalization platform. Differentiation 85, 161-172.   DOI
15 Serrano, M. and Blasco, M. A. (2001) Putting the stress on senescence. Curr. Opin. Cell Biol. 13, 748-753.   DOI
16 Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. and Lowe, S. W. (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593-602.   DOI
17 Smith, J. R. and Pereira-Smith, O. M. (1996) Replicative senescence: implications for in vivo aging and tumor suppression. Science 273, 63-67.   DOI
18 Shay, J. W. and Bacchetti, S. (1997) A survey of telomerase activity in human cancer. Eur. J. Cancer 33, 787-791.   DOI
19 Shay, J. W., Wright, W. E., Brasiskyte, D. and Van der Haegen, B. A. (1993) E6 of human papillomavirus type 16 can overcome the M1 stage of immortalization in human mammary epithelial cells but not in human fibroblasts. Oncogene 8, 1407-1413.
20 Shelton, D. N., Chang, E., Whittier, P. S., Choi, D. and Funk, W. D. (1999) Microarray analysis of replicative senescence. Curr. Biol. 9, 939-945.   DOI
21 Smogorzewska, A. and de Lange, T. (2002) Different telomere damage signaling pathways in human and mouse cells. EMBO J. 21, 4338-4348.   DOI
22 Stepanenko, A. A. and Kavsan, V. M. (2012) Immortalization and malignant transformation of eukaryotic Cells. Tsitol. Genet. 46, 36-75.
23 Stewart, S. A. and Weinberg, R. A. (2002) Senescence: does it all happen at the ends? Oncogene 21, 627-630.   DOI
24 Stoppler, H., Hartmann, D. P., Sherman, L. and Schlegel, R. (1997) The human papillomavirus type 16 E6 and E7 oncoproteins dissociate cellular telomerase activity from the maintenance of telomere length. J. Biol. Chem. 272, 13332-13337.   DOI
25 Vaziri, H. and Benchimol, S. (1998) Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span. Curr. Biol. 8, 279-282.   DOI
26 Yang, J., Chang, E., Cherry, A. M., Bangs, C. D., Oei, Y., Bodnar, A., Bronstein, A., Chiu, C. P. and Herron, G. S. (1999) Human endothelial cell life extension by telomerase expression. J. Biol. Chem. 274, 26141-26148.   DOI
27 Veldman, T., Horikawa, I., Barrett, J. C. and Schlegel, R. (2001) Transcriptional activation of the telomerase hTERT gene by human papillomavirus type 16 E6 oncoprotein. J. Virol. 75, 4467-4472.   DOI
28 Wazer, D. E., Liu, X. L., Chu, Q., Gao, Q. and Band, V. (1995) Immortalization of distinct human mammary epithelial cell types by human papilloma virus 16 E6 or E7. Proc. Natl. Acad. Sci. U.S.A. 92, 3687-3691.   DOI
29 Wong, D. J., Foster, S. A., Galloway, D. A. and Reid, B. J. (1999) Progressive region-specific de novo methylation of the p16 CpG island in primary human mammary epithelial cell strains during escape from M(0) growth arrest. Mol. Cell. Biol. 19, 5642-5651.   DOI
30 Yudoh, K., Matsuno, H., Nakazawa, F., Katayama, R. and Kimura, T. (2001) Reconstituting telomerase activity using the telomerase catalytic subunit prevents the telomere shorting and replicative senescence in human osteoblasts. J. Bone Miner. Res. 16, 1453-1464.   DOI
31 Ben-Porath, I. and Weinberg, R. A. (2004) When cells get stressed: an integrative view of cellular senescence. J. Clin. Invest. 113, 8-13.   DOI
32 Allen-Hoffmann, B. L., Schlosser, S. J., Ivarie, C. A., Sattler, C. A., Meisner, L. F. and O'Connor, S. L. (2000) Normal growth and differentiation in a spontaneously immortalized near-diploid human keratinocyte cell line, NIKS. J. Invest. Dermatol. 114, 444-455.   DOI
33 Baden, H. P., Kubilus, J., Kvedar, J. C., Steinberg, M. L. and Wolman, S. R. (1987) Isolation and characterization of a spontaneously arising long-lived line of human keratinocytes (NM 1). In Vitro Cell. Dev. Biol. 23, 205-213.   DOI
34 Beausejour, C. M., Krtolica, A., Galimi, F., Narita, M., Lowe, S. W., Yaswen, P. and Campisi, J. (2003) Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J. 22, 4212-4222.   DOI
35 Ben-Porath, I. and Weinberg, R. A. (2005) The signals and pathways activating cellular senescence. Int. J. Biochem. Cell Biol. 37, 961-976.   DOI
36 Berube, N. G., Smith, J. R. and Pereira-Smith, O. M. (1998) The genetics of cellular senescence. Am. J. Hum. Genet. 62, 1015-1019.   DOI
37 Bodnar, A. G., Ouellette, M., Frolkis, M., Holt, S. E., Chiu, C. P., Morin, G. B., Harley, C. B., Shay, J. W., Lichtsteiner, S. and Wright, W. E. (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349-352.   DOI
38 Carnero, A., Hudson, J. D., Price, C. M. and Beach, D. H. (2000) p16INK4A and p19ARF act in overlapping pathways in cellular immortalization. Nat. Cell Biol. 2, 148-155.   DOI
39 Boukamp, P., Petrussevska, R. T., Breitkreutz, D., Hornung, J., Markham, A. and Fusenig, N. E. (1988) Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J. Cell Biol. 106, 761-771.   DOI
40 Bringold, F. and Serrano, M. (2000) Tumor suppressors and oncogenes in cellular senescence. Exp. Gerontol. 35, 317-329.   DOI
41 Chapman, S., Liu, X., Meyers, C., Schlegel, R. and McBride, A. A. (2010) Human keratinocytes are efficiently immortalized by a Rho kinase inhibitor. J. Clin. Invest. 120, 2619-2626.   DOI
42 Coates, P. J. (2002) Markers of senescence? J. Pathol. 196, 371-373.   DOI
43 Cong, Y. S., Wright, W. E. and Shay, J. W. (2002) Human telomerase and its regulation. Microbiol. Mol. Biol. Rev. 66, 407-425.   DOI
44 Cowling, V. H. and Cole, M. D. (2007) E-cadherin repression contributes to c-Myc-induced epithelial cell transformation. Oncogene. 26, 3582-3586.   DOI
45 Cukusic, A., Skrobot Vidacek, N., Sopta, M. and Rubelj, I. (2008) Telomerase regulation at the crossroads of cell fate. Cytogenet. Genome Res. 122, 263-272.   DOI
46 d'Adda di Fagagna, F., Reaper, P. M., Clay-Farrace, L., Fiegler, H., Carr, P., Von Zglinicki, T., Saretzki, G., Carter, N. P. and Jackson, S. P. (2003) A DNA damage checkpoint response in telomere-initiated senescence. Nature 426, 194-198.   DOI
47 De Filippis, L., Ferrari, D., Rota Nodari, L., Amati, B., Snyder, E. and Vescovi, A. L. (2008) Immortalization of human neural stem cells with the c-myc mutant T58A. PLoS One. 3, e3310.   DOI
48 Drayton, S. and Peters, G. (2002) Immortalisation and transformation revisited. Curr. Opin. Genet. Dev. 12, 98-104.   DOI
49 Dickson, M. A., Hahn, W. C., Ino, Y., Ronfard, V., Wu, J. Y., Weinberg, R. A., Louis, D. N., Li, F. P. and Rheinwald, J. G. (2000) Human keratinocytes that express hTERT and also bypass a p16(INK4a)-enforced mechanism that limits life span become immortal yet retain normal growth and differentiation characteristics. Mol. Cell. Biol. 20, 1436-1447.   DOI
50 Dimri, G. P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E. E., Linskens, M., Rubelj, I., Pereira-Smith, O. and et al. (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. U.S.A. 92, 9363-9367.   DOI
51 Durst, M., Dzarlieva-Petrusevska, R. T., Boukamp, P., Fusenig, N. E. and Gissmann, L. (1987) Molecular and cytogenetic analysis of immortalized human primary keratinocytes obtained after transfection with human papillomavirus type 16 DNA. Oncogene 1, 251-256.
52 Flores, E. R., Allen-Hoffmann, B. L., Lee, D., Sattler, C. A. and Lambert, P. F. (1999) Establishment of the human papillomavirus type 16 (HPV-16) life cycle in an immortalized human foreskin keratinocyte cell line. Virology 262, 344-354.   DOI
53 Foster, S. A. and Galloway, D. A. (1996) Human papillomavirus type 16 E7 alleviates a proliferation block in early passage human mammary epithelial cells. Oncogene 12, 1773-1779.
54 Foster, S. A., Wong, D. J., Barrett, M. T. and Galloway, D. A. (1998) Inactivation of p16 in human mammary epithelial cells by CpG island methylation. Mol. Cell. Biol. 18, 1793-1801.   DOI
55 Fridman, A. L. and Tainsky, M. A. (2008) Critical pathways in cellular senescence and immortalization revealed by gene expression profiling. Oncogene. 27, 5975-5987.   DOI
56 Harley, C. B. (2002) Telomerase is not an oncogene. Oncogene. 21, 494-502.   DOI
57 Fridman, A. L., Tang, L., Kulaeva, O. I., Ye, B., Li, Q., Nahhas, F., Roberts, P. C., Land, S. J., Abrams, J. and Tainsky, M. A. (2006) Expression profiling identifies three pathways altered in cellular immortalization: interferon, cell cycle, and cytoskeleton. J. Gerontol. A. Biol. Sci. Med. Sci. 61, 879-889.   DOI
58 Greider, C. W. and Blackburn, E. H. (1996) Telomeres, telomerase and cancer. Sci. Am. 274, 92-97.   DOI
59 Haga, K., Ohno, S., Yugawa, T., Narisawa-Saito, M., Fujita, M., Sakamoto, M., Galloway, D. A. and Kiyono, T. (2007) Efficient immortalization of primary human cells by p16INK4a-specific short hairpin RNA or Bmi-1, combined with introduction of hTERT. Cancer Sci. 98, 147-154.   DOI
60 Hawley-Nelson, P., Vousden, K. H., Hubbert, N. L., Lowy, D. R. and Schiller, J. T. (1989) HPV16 E6 and E7 proteins cooperate to immortalize human foreskin keratinocytes. EMBO J. 8, 3905-3910.
61 Hayflick, L. (1965) The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. 37, 614-636.   DOI
62 Hayflick, L. and Moorhead, P. S. (1961) The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585-621.   DOI
63 Herbert, B. S., Wright, W. E. and Shay, J. W. (2002) p16(INK4a) inactivation is not required to immortalize human mammary epithelial cells. Oncogene. 21, 7897-7900.   DOI
64 Herbig, U., Jobling, W. A., Chen, B. P., Chen, D. J. and Sedivy, J. M. (2004) Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol. Cell. 14, 501-513.   DOI
65 Kim, N. W., Piatyszek, M. A., Prowse, K. R., Harley, C. B., West, M. D., Ho, P. L., Coviello, G. M., Wright, W. E., Weinrich, S. L. and Shay, J. W. (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266, 2011-2015.   DOI
66 Itahana, K., Zou, Y., Itahana, Y., Martinez, J. L., Beausejour, C., Jacobs, J. J., Van Lohuizen, M., Band, V., Campisi, J. and Dimri, G. P. (2003) Control of the replicative life span of human fibroblasts by p16 and the polycomb protein Bmi-1. Mol. Cell. Biol. 23, 389-401.   DOI
67 Jarrard, D. F., Sarkar, S., Shi, Y., Yeager, T. R., Magrane, G., Kinoshita, H., Nassif, N., Meisner, L., Newton, M. A., Waldman, F. M. and Reznikoff, C. A. (1999) p16/pRb pathway alterations are required for bypassing senescence in human prostate epithelial cells. Cancer Res. 59, 2957-2964.
68 Jiang, X. R., Jimenez, G., Chang, E., Frolkis, M., Kusler, B., Sage, M., Beeche, M., Bodnar, A. G., Wahl, G. M., Tlsty, T. D. and Chiu, C. P. (1999) Telomerase expression in human somatic cells does not induce changes associated with a transformed phenotype. Nat. Genet. 21, 111-114.   DOI
69 Kiyono, T., Foster, S. A., Koop, J. I., McDougall, J. K., Galloway, D. A. and Klingelhutz, A. J. (1998) Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 396, 84-88.   DOI
70 Klingelhutz, A. J., Foster, S. A. and McDougall, J. K. (1996) Telomerase activation by the E6 gene product of human papillomavirus type 16. Nature 380, 79-82.   DOI
71 Klingelhutz, A. J. and Roman, A. (2012) Cellular transformation by human papillomaviruses: lessons learned by comparing high- and low-risk viruses. Virology 424, 77-98.   DOI
72 Lundberg, A. S., Hahn, W. C., Gupta, P. and Weinberg, R. A. (2000) Genes involved in senescence and immortalization. Curr. Opin. Cell Biol. 12, 705-709.   DOI
73 Lee, K. M., Choi, K. H. and Ouellette, M. M. (2004) Use of exogenous hTERT to immortalize primary human cells. Cytotechnology 45, 33-38.   DOI
74 Lehman, T. A., Modali, R., Boukamp, P., Stanek, J., Bennett, W. P., Welsh, J. A., Metcalf, R. A., Stampfer, M. R., Fusenig, N., Rogan, E. M. and et al. (1993) p53 mutations in human immortalized epithelial cell lines. Carcinogenesis 14, 833-839.   DOI
75 Liu, X., Ory, V., Chapman, S., Yuan, H., Albanese, C., Kallakury, B., Timofeeva, O. A., Nealon, C., Dakic, A., Simic, V., Haddad, B. R., Rhim, J. S., Dritschilo, A., Riegel, A., McBride, A. and Schlegel, R. (2012) ROCK inhibitor and feeder cells induce the conditional reprogramming of epithelial cells. Am. J. Pathol. 180, 599-607.   DOI
76 Masutomi, K., Yu, E. Y., Khurts, S., Ben-Porath, I., Currier, J. L., Metz, G. B., Brooks, M. W., Kaneko, S., Murakami, S., DeCaprio, J. A., Weinberg, R. A., Stewart, S. A. and Hahn, W. C. (2003) Telomerase maintains telomere structure in normal human cells. Cell 114, 241-253.   DOI
77 Maurelli, R., Zambruno, G., Guerra, L., Abbruzzese, C., Dimri, G., Gellini, M., Bondanza, S. and Dellambra, E. (2006) Inactivation of p16INK4a (inhibitor of cyclin-dependent kinase 4A) immortalizes primary human keratinocytes by maintaining cells in the stem cell compartment. FASEB J. 20, 1516-1518.   DOI
78 Miller, J., Dakic, A., Chen, R., Palechor-Ceron, N., Dai, Y., Kallakury, B., Schlegel, R. and Liu, X. (2013) HPV16 E7 protein and hTERT proteins defective for telomere maintenance cooperate to immortalize human keratinocytes. PLoS Pathog. 9, e1003284.   DOI