DOI QR코드

DOI QR Code

국부 가열 금형을 이용한 플라스틱 나노 구조표면 사출성형 연구

A Study on Plastic Injection Molding of NanosStructured Surface with a Local Mold Heating System

  • 라문우 (한국생산기술연구원 금형기술그룹) ;
  • 박장민 (영남대학교 기계공학부) ;
  • 김동언 (한국생산기술연구원 금형기술그룹)
  • 투고 : 2015.07.24
  • 심사 : 2015.08.06
  • 발행 : 2015.08.31

초록

In this study, we fabricated and characterized a nanostructured surface based on a plastic injection molding with a local mold heating (LMH) system. A metal mold core with a closed packed nano convex array (CVA) was achieved by integrated engineering procedures: (1) master template fabrication by anodic aluminum oxidation (AAO), (2) nickel electroforming (NE) process, and (3) post-processing by precision machining. The nickel mold core was utilized to replicate a surface with a closed packed nano concave-array (CCA) based on injection molding using cyclic olefin copolymer (COC) as a plastic material. In particular, an LMH system was introduced to enhance transcription quality of the nano structures by delaying solidification of molten polymer near the surface of the mold core.

키워드

참고문헌

  1. Jirage, K. B., Hulteen, J. C., and Martin, C. R., "Nanotubule-based molecular-filtration membranes" Science, Vol. 278, No. 5338, pp. 655-658, 1997. https://doi.org/10.1126/science.278.5338.655
  2. Miljkovic, N., Enright, R., and Wang, E. N., "Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces," ACS nano, Vol. 6, No. 2, pp. 1776-1785, 2012. https://doi.org/10.1021/nn205052a
  3. Park, K. S., Cha, K. J., Han, I. B., Shin, D. A., Cho, D. W., Lee, S. H., and Kim, D. S., "Mass-producible Nano-featured Polystyrene Surfaces for Regulating the Differentiation of Human Adipose-derived Stem Cells," Macromol Bioscience, Vol. 12, No. 11, pp. 1480-1489, 2012. https://doi.org/10.1002/mabi.201200225
  4. Cha, K. J., Hong, J. M., Cho, D. W., and Kim, D. S., "Enhanced osteogenic fate and function of MC3T3-E1 cells on nanoengineered polystyrene surfaces with nanopillar and nanopore arrays," Biofabrication, Vol. 5, No. 2, pp. 025007, 2013. https://doi.org/10.1088/1758-5082/5/2/025007
  5. Cha, K. J., Na, M. H., Kim, H. W., and Kim, D. S., "Nano Petri dishes: a new polystyrene platform for studying cell-nanoengineered surface interactions.", J. Micromech Microeng, Vol. 24, No. 5, pp. 055002, 2014. https://doi.org/10.1088/0960-1317/24/5/055002
  6. Kim, D. S., Lee, B. K., Yeo, J., Choi, M. J., Yang, W., and Kwon, T. H., "Fabrication of PDMS micro/nano hybrid surface for increasing hydrophobicity," Microelectron Eng, Vol. 86, No. 4, pp. 1375-1378, 2009. https://doi.org/10.1016/j.mee.2009.02.017
  7. Yeo, J., Ryu, J., Lee, B. K., Byeon, E., Kwon, T. H., and Kim, D. S., "Theoretical and experimental characterization of wettability of various nanolens arrayed polymer surfaces replicated with nanodimpled aluminum mold insert," Microsyst Technol, Vol. 16, No. 8-9, pp. 1425-1430, 2010. https://doi.org/10.1007/s00542-010-1092-y
  8. Eichenfield, M., Camacho, R., Chan, J., Vahala, K. J., and Painter, O., "A picogram-and nanometre-scale photonic-crystal optomechanical cavit,". Nature, Vol. 459, No. 7246, pp. 550-555, 2009. https://doi.org/10.1038/nature08061
  9. Bhushan, B., Jung, Y. C., and Koch, K., "Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion," Philos T Roy Soc A, Vol. 367, No. 1894, pp. 1631-1672, 2009. https://doi.org/10.1098/rsta.2009.0014
  10. Huang, J., Wang, X., and Wang, Z. L., "Controlled replication of butterfly wings for achieving tunable photonic properties," Nano Lett, Vol. 6, No. 10, pp. 2325-2331, 2006. https://doi.org/10.1021/nl061851t
  11. Choi, D. H., Lee, S. M., Lee, C. W., Lee, P. S., Lee, J. H., Lee, K. H, ... and Hwang, W. B, "Dependence of the mechanical properties of nanohoneycomb structures on porosity," J Micromech Microeng, Vol. 17, No. 3, pp. 501, 2007. https://doi.org/10.1088/0960-1317/17/3/012
  12. Park, J. M., Kim, N. H., Lee, B. K., Lee, K. H., and Kwon, T. H., "Nickel stamp fabrication and hot embossing for mass-production of micro/nano combined structures using anodic aluminum oxide," Microsyst Technol, Vol. 14, No. 9-11, pp. 1689-1694, 2008. https://doi.org/10.1007/s00542-007-0504-0
  13. Park, J. M., "Fabrication of various nano-structured nickel stamps using anodic aluminum oxide," Microsyst Technol, Vol. 20, No. 12, pp. 2157-2163, 2014. https://doi.org/10.1007/s00542-014-2094-y
  14. Lee, G-.S., Jin, D-.H. and Kwak, J-.S, "A Study on Plastic Injection Molding of a Metallic Resin Pigment using a Rapid Heating and Cooling System," J. Korean Soc. Manuf. Process. Eng., Vol. 14, No. 2, pp. 87-92, 2015. https://doi.org/10.14775/ksmpe.2015.14.2.087
  15. Masuda, H., and Fukuda, K., "Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina," Science, Vol. 268, No. 5216, pp. 1466-1468, 1995. https://doi.org/10.1126/science.268.5216.1466
  16. Lamonte, R. R., and McNally, D., "Cyclic olefin copolymers," Adv Mater Process, Vol. 159, No. 3, pp. 33-36, 2001.
  17. Joannopoulos, J. D., Villeneuve, P. R., and Fan, S., "Photonic crystals: putting a new twist on light," Nature, Vol. 386, No. 6621, pp. 143-149, 1997. https://doi.org/10.1038/386143a0