DOI QR코드

DOI QR Code

Analysis of Influential Factors on Wax Deposition for Flow Assurance in Subsea Oil Production System

해저 석유생산시스템에서 유동안정성 확보를 위한 왁스집적 영향요소 분석 연구

  • Jung, Sun-Young (Energy and Resources Engineering, Korea Maritime and Ocean University) ;
  • Kang, Pan-Sang (Energy and Resources Engineering, Korea Maritime and Ocean University) ;
  • Lim, Jong-Se (Energy and Resources Engineering, Korea Maritime and Ocean University)
  • Received : 2015.05.26
  • Accepted : 2015.07.21
  • Published : 2015.07.31

Abstract

There has been an increased interest in the mitigation of wax deposition because wax, which usually accumulates in subsea oil-production systems, interrupts stable oil production and significantly increases the cost. To guarantee a required oil flow by mitigating wax deposition, we need to obtain a reliable estimation of the wax deposition. In this research, we perform simulations to understand the major mechanisms that lead to wax deposition, namely molecular diffusion, shear stripping reduction, and aging. While the model variables (shear reduction multiplier, wax porosity, wax thermal conductivity, and molecular diffusion multiplier) can be measured experimentally, they have high uncertainty. We perform an analysis of these variables and the amount of water and gas in the multiphase flow to determine these effects on the behavior of wax deposition. Based on the results obtained during this study for a higher wax porosity and molecular diffusion multiplier, we were able to confirm the presence of thicker wax deposits. As the shear reduction multiplier decreased, the thickness of the wax deposits increased. As the amount of water increased, there was also an increase in the amount of wax deposits until 40% water cut and decreased. As the amount of gas increased, the amount of wax deposits increased because of the loss of the light hydrocarbon component in the liquid phase. The results of this study can be utilized to estimate the wax deposition behavior by comparing the experiment (or field) and simulation data.

해저 석유생산시스템에서 빈번히 발생하는 왁스집적 문제는 안정적인 석유 생산을 방해하고 높은 비용을 발생시키므로 왁스집적 제어에 대한 관심이 증가하고 있다. 왁스집적 제어를 통한 석유의 유동안정성 확보를 위해서는 왁스집적거동을 신뢰성 있게 예측해야 한다. 이 연구에서는 왁스집적 거동에 큰 영향을 미치는 분자확산, 전단응력효과, 왁스경화 메커니즘을 시뮬레이션 기술에 적용하여 불확실도가 높은 변수인 전단응력계수, 왁스고형물의 공극률, 왁스 열전도도, 분자확산계수와 물과 가스 양이 왁스집적 거동에 미치는 영향에 대한 분석을 단상과 다상 유동 시 층류 유동 조건에서 수행하였다. 그 결과 왁스고형물의 공극률과 분자확산계수가 높아질수록, 전단응력계수가 낮아질수록 왁스집적 두께가 두꺼워지는 것을 확인할 수 있었고 석유의 온도가 왁스집적 위치에 주요하게 영향을 미치는 것으로 판단된다. 물의 양에 따른 왁스집적 시뮬레이션 결과 기존 연구에서 다소 다른 결과들이 존재하나 이 연구 조건에서는 물의 양 40%까지 왁스집적량이 증가하다 감소하는 것을 확인하였고 가스 양이 많아질수록 유체의 액상 내 가벼운 탄화수소 농도 감소로 인해 왁스집적량이 증가하는 것을 파악하였다. 이 연구결과는 향후 현장 또는 현장을 모사한 실험시스템에서의 결과와 시뮬레이션 결과를 매칭하여 해저 유동관에서 왁스집적 거동을 예측하는데 효과적으로 적용될 수 있을 것으로 사료된다.

Keywords

References

  1. J. S. Lim, "Flow assurance technologies in oil and gas field," Petroleum, vol. 26, no. 86, pp. 4-21, 2010 (in Korean).
  2. J. S. Lim, P. S. Kang, S. R. Yu, "Flow assurance technologies for mitigating wax deposition in subsea petroleum production system," Journal of the Korean Society of Mineral and Energy Resources Engineers, vol. 50, no. 2, pp. 278-296, 2013 (in Korean). https://doi.org/10.12972/ksmer.2013.50.2.278
  3. R. Venkatesan, The Deposition and Rheology of Organic Gels, Ph.D. Thesis, The University of Michigan, U.S.A., 2004.
  4. R. Bagatin, C. Busto, S. Correa, M. Margarone, and C. Carniani, "Wax modeling: There is need for alternatives," SPE Russian Oil and Gas Technology Conference and Exhibition, SPE 115184, 2008.
  5. K. Akbarzadeh, J. Ratulowski, D. Eskin, and T. Davies, "The importance of wax-deposition measurements in the simulation and design of subsea pipelines," SPE Projects, Facilities & Construction, vol. 5, no. 2, pp. 49-57, 2010. https://doi.org/10.2118/115131-PA
  6. C. L. arrier, H. P. Rønningsen, J. Kolnes, E. Leporcher, "Wax deposition in north sea gas condensate and oil systems: Comparison between operational experience and model prediction," SPE Annual Technical Conference and Exhibition, SPE 77573, 2002.
  7. I. Noville and L. Naveira, "Comparison between real field data and the results of wax deposition simulation," SPE Latin American and Caribbean Petroleum Engineering Conference, SPE 152575, 2012.
  8. S. Pan, J. Zhu, D. Zhang, A. Razouki, and M. Talbot, "Case studies on simulation of wax deposition in pipelines," International Petroleum Technology Conference, IPTC 13420, 2009.
  9. P. Singh, R. Venkatesan, H. S. Fogler, and N. Nagarajan, "Formation and aging of incipient thin film wax-oil gels," AJChE Journal, vol. 46, no. 5, pp. 1059-1074, 2000.
  10. P. Singh, R. Venkatesan, H. S. Fogler, and N. R. Nagarajan, "Morphological evolution of thick wax deposits during Aging," AJChE Journal, vol. 47, no. 1, pp. 6-18, 2001.
  11. W. W. Frenier, M. Ziauddin, and R. Venkatesan, Organic Deposits in Oil and Gas Production, U.S.A.: Society of Petroleum Engineers, 2010.
  12. P. A. Bern, V. R. Withers, and R. J. R. Cairns, "Wax deposition in crude oil pipelines," European Offshore Technology Conference and Exhibition, SPE 206-1980, 1980.
  13. E. D. Burger, T. K. Perkins, and J. H. Striegler, "Studies of wax deposition in the trans alaska pipeline," Journal of Petroleum Technology, vol. 33, no. 6, pp. 1075-1086, 1981. https://doi.org/10.2118/8788-PA
  14. T. S. Brown, V. G. Niesen, and D. D. Erickson, "Measurement and prediction of the kinetics of paraffin deposition," SPE Annual Technical Conference and Exhibition, SPE 26548, 1993.
  15. F. W. Jessen and J. N. Howell, "Effect of flow rate on paraffin accumulation in plastic, steel, and coated pipe," Petroleum Transactions, vol. 213, pp. 80-84, 1958.
  16. T. Bott and J. Gudmundsson, "Deposition of paraffin wax from kerosene in cooled heat exchanger tubes," The Canadian Journal of Chemical Engineering, vol. 55, no. 4, pp. 381-385, 1977. https://doi.org/10.1002/cjce.5450550403
  17. A. Nazar, B. Dabir, H. Vaziri, and M. Islam, "Experimental and mathematical modeling of wax deposition and propagation in pipes transporting crude oil," SPE Production and Operations Symposium, SPE 67328, 2001.
  18. K. Akbarzadeh and M. Zougari, "Introduction to a novel approach for modeling wax deposition in fluid flow. 1. taylor-coutte system," Industrial & Engineering Chemistry Research, vol. 47, no. 3, pp. 953-963, 2008. https://doi.org/10.1021/ie0711325
  19. K. Rosvold, Wax Deposition Models, Master Thesis, Norwegian University of Science and Technology, Norway, 2008.
  20. L. F. A. Azevedo, and A. M. Teixeira, "A critical review of the modeling of wax deposition mechanisms," Petroleum Science and Technology, vol. 3, no. 21, pp. 393-408, 2003.
  21. S. Todi, Experimental and Modeling Studies of Wax Deposition in Crude Oil Carrying Pipelines, Ph.D. Thesis, The University of Utah, U.SA, 2005.
  22. Pipesim Manual, 2009, Schlumberger.
  23. G. H. Couto, H. Chen, E. Dellecase, C. Sarica, and M. Volk, "An investigation of two-phase oil/water paraffin deposition," Offshore Technology Conference, OTC 17963, 2006.
  24. P. S. Kang, S. R. Yu, and J. S. Lim, "Experimental research of multiphase flow effect on wax deposition in oil production system," Proceeding of the 98th KSMER Spring Conference, p. 390, 2012 (in Korean).
  25. F. E. Eaton and G. Y. Weeter, "Paraffin deposition in flow lines," Proceedings of the 16th National Heat Transfer Conference, 76-CSME/CSChE-22, 1976.
  26. D. Janoff and J. Davalath, "Application of insulation materials for deepwater subsea completion and production equipment," Offshore Technology Conference, OTC 14119, 2002.
  27. P. Huanquan, F. Abbas, and F. Per, "Pressure and composition effect on wax precipitation: experimental data and model results," SPE Journal, vol. 12, no. 4, pp. 250-258, 1997.