DOI QR코드

DOI QR Code

Changes in Antioxidant Contents and Activities of Adzuki Beans according to Germination Time

발아시간에 따른 팥의 항산화성분 및 항산화활성의 변화

  • Woo, Koan Sik (National Institute of Crop Science, Rural Development Administration) ;
  • Song, Seuk Bo (National Institute of Crop Science, Rural Development Administration) ;
  • Ko, Jee Yeon (National Institute of Crop Science, Rural Development Administration) ;
  • Lee, Jae Saeng (National Institute of Crop Science, Rural Development Administration) ;
  • Jung, Tae Wook (Research Policy Bureau, Rural Development Administration) ;
  • Jeong, Heon Sang (Department of Food Science and Technology, Chungbuk National University)
  • 우관식 (농촌진흥청 국립식량과학원) ;
  • 송석보 (농촌진흥청 국립식량과학원) ;
  • 고지연 (농촌진흥청 국립식량과학원) ;
  • 이재생 (농촌진흥청 국립식량과학원) ;
  • 정태욱 (농촌진흥청 연구정책국) ;
  • 정헌상 (충북대학교 식품공학과)
  • Received : 2015.01.19
  • Accepted : 2015.03.16
  • Published : 2015.05.31

Abstract

The purpose of this study was to evaluate the yield, antioxidant content, and antioxidant activity of adzuki beans according to germination time. Cultivated varieties were Vigna angularis var. Nipponensis cv. Chungju-pat (CJP), and Yeonduchae (YDC), and Vigna radiata (L.) R. Wilczek cv. Dahyeon (DH). The moisture, crude protein, calcium, and magnesium contents of YDC significantly changed with increasing germination time, whereas potassium, natrium, and aluminium contents did not significantly change. Sprout yield, total polyphenol, flavonoid, and tannin contents of ethanolic extracts from adzuki and mung beans significantly increased with increasing germination time. Total polyphenol contents of ungerminated CJP, YDC, and DH were 1.96, 2.68, and 2.02 mg/g, and those of CJP and YDC germinated for 144 h were 3.33 and 3.47 mg/g, respectively. Total flavonoid content of adzuki beans substantially decreased with increasing germination time. Total tannin content substantially increased with increasing germination time, and YDC showed higher contents (0.85 mg/g) sample germinated for 120 h. DPPH radical scavenging activities of CJP and YDC substantially decreased with increasing germination time, whereas that of DH increased. ABTS radical scavenging activities of ungerminated CJP, YDC, and DH were 4.57, 6.51, and 2.82 mg/g, respectively, and increased after germination for 72~120 h.

본 연구에서는 나물용 팥으로 새롭게 개발된 팥 신품종 연두채의 나물로의 이용 가능성을 평가하고 그 추출물에 대한 항산화성분 및 항산화활성을 측정하였다. 발아시간에 따른 싹 및 뿌리의 길이와 나물 수율을 고려해 볼 때 연두채는 120~144시간 발아시키는 것이 바람직할 것으로 생각된다. 발아시간에 따라 수분은 유의적으로 증가하였고 단백질은 유의적으로 약간 증가하였으나 큰 차이를 보이지 않았다. 연두채의 칼슘, 마그네슘 함량은 유의적으로 증가하는 경향을 보였고 칼륨, 나트륨, 알루미늄 함량은 유의적인 차이를 보이지 않았다. 발아시간에 따른 에탄올 추출물의 총 폴리페놀, 플라보노이드 및 탄닌 등 항산화성분의 함량은 발아시간에 따라 유의적인 차이를 보였다. 충주팥, 연두채, 다현녹두 원료곡의 총 폴리페놀 함량은 각각 1.96, 2.68 및 2.02 mg/g이었고 충주팥과 연두채는 144시간(각각 3.33 및 3.47 mg/g)에 높은 함량을 나타내었다. 원료곡의 총 플라보노이드 함량은 발아시간이 증가함에 따라 충주팥과 연두채가 대체적으로 감소하는 경향을 보였다. 원료곡의 총 탄닌 함량은 발아시간이 증가함에 따라 대체적으로 증가하는 경향을 보였고 충주팥은 120시간(0.96 mg/g), 연두채는 144시간(0.85 mg/g), 다현녹두는 120시간(1.62 mg/g)에 높은 함량을 보였다. 원료곡의 DPPH radical 소거활성은 발아시간이 증가함에 따라 충주팥과 연두채는 대체적으로 감소하고 다현녹두는 증가하였다. ABTS radical 소거활성은 각각 4.57, 6.51 및 2.82 mg TE/g이었고 충주팥과 연두채는 발아 초반에 감소하다가 각각 120 및 72시간 이후 증가하였다. 이상의 결과 연두채 싹나물은 다현녹두 나물에 비해 항산화성분 및 활성은 약간 낮으나 수율이 높고 탄닌 등 쓴맛 성분이 낮아 싹나물로의 이용성이 기대된다.

Keywords

References

  1. Rho CW, Son SY, Hong ST, Lee KH, Ryu IM. 2003. Agronomic characters of Korean adzuki beans (Vigna angularis (Willd.) Ohwi & Ohashi). Korean J Plant Res 16: 147-154.
  2. Koh KJ, Shin DB, Lee YC. 1997. Physicochemical properties of aqueous extracts in small red bean, mung bean and black soybean. Korean J Food Sci Technol 29: 854-859.
  3. Kim CG, Oh BH, Na JM, Shin DH. 2003. Comparison of physicochemical properties of Korean and Chinese red bean starches. Korean J Food Sci Technol 35: 551-555.
  4. Chang KY, Han KS, Park JC. 1968. Studies on the selection in adzuki bean breeding. III. Phenotypic and genotypic correlations among some characters in the population of adzuki bean varieties. Res Bul Chinju Agric Col 7: 39-44.
  5. Choi SY, Jeong YJ, Lee SJ, Chi OH, Chegal SA. 2002. Food and health for modern people. Dongmyungsa, Seoul, Korea. p 244-246.
  6. Yoshida K, Sato Y, Okuno R, Kameda K, Isobe M, Kondo T. 1996. Structural analysis and measurement of anthocyanins from colored seed coats of Vigna, Phaseolus, and Glycine legumes. Biosci Biotechnol Biochem 60: 589-593. https://doi.org/10.1271/bbb.60.589
  7. Ariga T, Koshiyama I, Fukushima D. 1988. Antioxidative properties of procyanidins B-1 and B-3 from azuki beans in aqueous systems. Agric Biol Chem 52: 2717-2722. https://doi.org/10.1271/bbb1961.52.2717
  8. Koide T, Hashimoto Y, Kamei H, Kojima T, Hasegawa M, Terabe K. 1997. Antitumor effect of anthocyanin fractions extracted from red soybeans and red beans in vitro and in vivo. Cancer Biother Radiopharm 12: 277-280.
  9. Kim HJ, Sohn KH, Park HK. 1990. Emulsion properties of small red bean protein isolates. Korean J Soc Food Sci 6: 9-14.
  10. Meng GT, Ma CY. 2001. Flow property of globulin from red bean (Phaseolus angularis). Food Res Int 34: 401-407. https://doi.org/10.1016/S0963-9969(00)00184-8
  11. Meng GT, Ma CY. 2001. Thermal properties of Phaseolus angularis (red bean) globulin. Food Chem 73: 453-460. https://doi.org/10.1016/S0308-8146(00)00329-0
  12. Abu-Ghannam N. 1998. Modelling textural changes during the hydration process of red beans. J Food Eng 38: 341-352. https://doi.org/10.1016/S0260-8774(98)00127-7
  13. Bartnick M, Szafranska I. 1987. Changes in phytate content and phytase activity during the germination of some cereals. J Cereal Sci 5: 23-28. https://doi.org/10.1016/S0733-5210(87)80005-X
  14. Lee YR, Kim JY, Woo KS, Hwang IG, Kim KH, Kim KJ, Kim JH, Jeong HS. 2007. Changes in the chemical and functional components of Korean rough rice before and after germination. Food Sci Biotechnol 16: 1006-1010.
  15. Lee MH, Son HS, Choi OK, Oh SK, Kwon TB. 1994. Changes in physico-chemical properties and mineral contents during buckwheat germination. Korean J Food & Nutr 7: 267-273.
  16. Cho BM, Yoon SK, Kim WJ. 1985. Changes in amino acid and fatty acids composition during germination of rapeseed. Korean J Food Sci Technol 17: 371-376.
  17. Choi KS, Kim ZU. 1985. Changes in lipid components during germination of mungbean. Korean J Food Sci Technol 17: 271-275.
  18. Colmenares de Ruiz AS, Bressani R. 1990. Effect of germination on the chemical composition and nutritive value of amaranth grain. Cereal Chem 67: 519-522.
  19. Kim IS, Kwon TB, Oh SK. 1988. Study on the chemical change of general composition, fatty acids and minerals of rapeseed during germination. Korean J Food Sci Technol 20: 188-193.
  20. Hsu D, Leung HK, Finney PL, Morad MM. 1980. Effect of germination on nutritive value and baking properties of dry peas, lentils and faba beans. J Food Sci 45: 87-91. https://doi.org/10.1111/j.1365-2621.1980.tb03877.x
  21. Ikeda K, Arioka K, Fujii S, Kusano T, Oku M. 1984. Effect on buckwheat protein quality of seed germination and changes in trypsin inhibitor content. Cereal Chem 61: 236-238.
  22. Lee MJ, Cheong YK, Kim HS, Park KH, Doo HS, Suh DY. 2003. trans-Resveratrol content of varieties and growth period in peanut. Korean J Crop Sci 48: 429-433.
  23. Song MR. 2001. Volatile flavor components of cultivated radish (Raphanus sativus L.) sprout. Korean J Food & Nutr 14: 20-27.
  24. Kim IS, Han SH, Han KW. 1997. Study on the chemical change of amino acid and vitamin of rapeseed during germination. J Korean Soc Food Sci Nutr 26: 1058-1062.
  25. Lee MH, Woo SJ, Oh SK, Kwon TB. 1994. Changes in contents and composition of dietary fiber during buckwheat germination. Korean J Food & Nutr 7: 274-283.
  26. Kwon TB. 1994. Changes in rutin and fatty acids of buckwheat during germination. Korean J Food & Nutr 7: 124-127.
  27. Kim YS, Kim JG, Lee YS, Kang IJ. 2005. Comparison of the chemical components of buckwheat seed and sprout. J Korean Soc Food Sci Nutr 34: 81-86. https://doi.org/10.3746/jkfn.2005.34.1.081
  28. Woo KS, Seo MC, Ko JY, Song SB, Lee JS, Kang JR, Kwak DY, Oh BG, Nam MH, Jeong HS, Lee J. 2011. Physicochemical characteristics of commercially available cereal crops in Korea. J Agr Sci Chungbuk Nat'l Univ 27: 40-47.
  29. Woo KS, Ko JY, Song SB, Lee JS, Kang JR, Oh BG, Nam MH, Jeong JH, Jeong HS, Seo MC. 2010. Physicochemical characteristics of vinegars fermented from cereal crops with Incalgyun. J Korean Soc Food Sci Nutr 39: 1171-1178. https://doi.org/10.3746/jkfn.2010.39.8.1171
  30. Dewanto V, Wu X, Liu RH. 2002. Processed sweet corn has higher antioxidant activity. J Agric Food Chem 50: 4959-4964. https://doi.org/10.1021/jf0255937
  31. Duval B, Shetty K. 2001. The stimulation of phenolics and antioxidant activity in pea (Pisum sativam) elicited by genetically transformed anise root extract. J Food Biochem 25: 361-377. https://doi.org/10.1111/j.1745-4514.2001.tb00746.x
  32. Choi Y, Lee SM, Chun J, Lee HB, Lee J. 2006. Influence of heat treatment on the antioxidant activities and polyphenolic compounds of Shiitake (Lentinus edodes) mushroom. Food Chem 99: 381-387. https://doi.org/10.1016/j.foodchem.2005.08.004
  33. Torres A, Frias J, Granito M, Vidal-Valverde C. 2007. Germinated Cajanus cajan seeds as ingredients in pasta products: Chemical, biological and sensory evaluation. Food Chem 101: 202-211. https://doi.org/10.1016/j.foodchem.2006.01.018
  34. Mo KH, Choi Y, Choi SG, Lee J. 2006. The change of some compounds in brown rice germinated by filtrate of loess suspension. J Agric Life Sci 40: 41-48.
  35. Choi Y, Kim M, Shin JJ, Park JM, Lee J. 2003. The antioxidant activities of the some commercial teas. J Korean Soc Food Sci Nutr 32: 723-727. https://doi.org/10.3746/jkfn.2003.32.5.723
  36. Rice-Evans C, Miller N, Paganga G. 1997. Antioxidant properties of phenolic compounds. Trends Plant Sci 2: 152-159. https://doi.org/10.1016/S1360-1385(97)01018-2
  37. Middleton E, Kandaswami C. 1994. Potential health-promoting properties of citrus flavonoids. Food Technol 48: 115-119.
  38. Nakagawa M, Amano I. 1974. Evaluation method of green tea grade by nitrogen analysis. Nippon Shokuhin Kogyo Gakkaishi 21: 57-63. https://doi.org/10.3136/nskkk1962.21.57
  39. Nieva Moreno MI, Isla MI, Sampietro AR, Vattuone MA. 2000. Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. J Ethnopharmacol 71: 109-114. https://doi.org/10.1016/S0378-8741(99)00189-0
  40. Kim JE, Joo SI, Seo JH, Lee SP. 2009. Antioxidant and ${\alpha}$-glucosidase inhibitory effect of tartary buckwheat extract obtained by the treatment of different solvents and enzymes. J Korean Soc Food Sci Nutr 38: 989-995. https://doi.org/10.3746/jkfn.2009.38.8.989
  41. Kim SM, Cho YS, Sung SK. 2001. The antioxidant ability and nitrite scavenging ability of plant extracts. Korean J Food Sci Technol 33: 626-632.

Cited by

  1. Effect of Germination and Roasting Treatment on the Quality Characteristics and Antioxidant Properties of Black Soybean Flours vol.22, pp.1, 2018, https://doi.org/10.13050/foodengprog.2018.22.1.75
  2. 혼합잡곡 첨가 취반 밥의 품질 및 항산화특성 vol.62, pp.4, 2015, https://doi.org/10.7740/kjcs.2017.62.4.352
  3. 수분함량을 달리하여 제조한 볶음 옥수수차의 품질 및 항산화 특성 vol.30, pp.6, 2017, https://doi.org/10.9799/ksfan.2017.30.6.1149
  4. 발아와 볶음처리에 따른 콩가루 품질 및 이화학 특성 vol.50, pp.2, 2018, https://doi.org/10.9721/kjfst.2018.50.2.143
  5. 품종 및 수확시기를 달리한 수수의 이화학 특성 변화 vol.50, pp.3, 2015, https://doi.org/10.9721/kjfst.2018.50.3.260
  6. 조(Setaria italica Beauv.)의 품종별 파종시기에 따른 이화학 특성과 항산화 활성 vol.31, pp.4, 2015, https://doi.org/10.9799/ksfan.2018.31.4.449
  7. 품종 및 파종시기별 동부의 품질 및 이화학 특성 vol.31, pp.4, 2018, https://doi.org/10.9799/ksfan.2018.31.4.502
  8. 벼 품종 특성에 따른 쌀어묵의 품질 특성 vol.65, pp.1, 2020, https://doi.org/10.7740/kjcs.2020.65.1.040
  9. 구증구포 처리 대두 추출물의 항산화 활성 및 Angiotensin-I Converting Enzyme 저해 효과 vol.33, pp.2, 2015, https://doi.org/10.9799/ksfan.2020.33.2.167
  10. 재배기간에 따른 쓴메밀(Fagopyrum tataricum Gaertner)싹의 항산화 활성 및 생리활성 평가 vol.35, pp.6, 2015, https://doi.org/10.7318/kjfc/2020.35.6.590
  11. Functional Compounds and Physiological Activities of Proso Millet Cultivars vol.50, pp.7, 2015, https://doi.org/10.3746/jkfn.2021.50.7.692
  12. Comparison of Functional Components and Physiological Activities in Peanut Hull Extracts by Cultivars and Extraction Solvent vol.50, pp.9, 2021, https://doi.org/10.3746/jkfn.2021.50.9.936
  13. Functional Compounds and Physiological Activities of Foxtail Millet (Setaria italica) and Finger Millet (Eleusine coracona) vol.50, pp.11, 2015, https://doi.org/10.3746/jkfn.2021.50.11.1152