DOI QR코드

DOI QR Code

Phenolic Compounds from the Leaves of Stewartia pseudocamellia Maxim. and their Whitening Activities

  • Roh, Hyun Jung (Natural Product Laboratory, School of Pharmacy, Sungkyunkawn University) ;
  • Noh, Hye-Ji (Lifetree Biotech Co. Ltd.) ;
  • Na, Chun Su (Lifetree Biotech Co. Ltd.) ;
  • Kim, Chung Sub (Natural Product Laboratory, School of Pharmacy, Sungkyunkawn University) ;
  • Kim, Ki Hyun (Natural Product Laboratory, School of Pharmacy, Sungkyunkawn University) ;
  • Hong, Cheol Yi (Lifetree Biotech Co. Ltd.) ;
  • Lee, Kang Ro (Natural Product Laboratory, School of Pharmacy, Sungkyunkawn University)
  • Received : 2014.12.11
  • Accepted : 2015.01.15
  • Published : 2015.05.01

Abstract

The half-dried leaves of Stewartia. pseudocamellia were extracted with hot water (SPE) and partitioned with n-hexane (SPEH), dichloromethane (SPED), and ethyl acetate (SPEE) successively. SPE and SPEE showed significant inhibitory effects against melanogenesis and tyrosinase activities. By bioassay-guided isolation, ten phenolic compounds were isolated by column chromatography from SPEE. The whitening effect of the isolated compounds from SPEE were tested for the inhibitory activities against melanogenesis using B16 melanoma cells, in vitro inhibition of tyrosinase, and L-3,4-dihydorxy-indole-2-carboxylic acid (L-DOPA) auto-oxidation assay. A cytotoxic activity assay was done to examine the cellular toxicity in Raw 264.7 macrophage cells. Of the compounds isolated, gallic acid and quercetin revealed significant inhibitory activities against melanogenesis compared to arbutin. In particular, quercetin exhibited similar inhibitory activities against tyrosinase and L-DOPA oxidation without cytotoxicity. These results suggested that SPE could be used as a potential source of natural skin-whitening material in cosmetics as well as in food products.

Keywords

References

  1. Arung, E. T., Furuta, S., Ishikawa, H., Kusuma, I. W., Shimizu, K. and Kondo, R. (2011) Anti-melanogenesis properties of quercetin- and its derivative-rich extract from Allium cepa. Food Chem. 124, 1024-1028. https://doi.org/10.1016/j.foodchem.2010.07.067
  2. Boissy, R. E. and Manga, P. (2004) On the etiology of contact/occupationalvitiligo. Pigment Cell Res. 17, 208-214. https://doi.org/10.1111/j.1600-0749.2004.00130.x
  3. Didem, S., Mahmut, K. S., Suna, A. S., Hilal, O. and Olov, S. (2009) Antioxidant galloylatedflavonoid from Geranium tuberosum L. subsp. tuberosum. Tuck. J. Chem. 33, 685-692.
  4. Fujii, T. and Saito M. (2009) Inhibitory effect of quercetin isolated from rose rip (Rosa canina L.) against melanogenesis by mouse melanoma cells. Biosci. Biotechnol. Biochem. 73, 1989-1993. https://doi.org/10.1271/bbb.90181
  5. Guvenalp, Z. and Demirezer, L. O. (2005) Flavonol glycosides from Asperulaarvensis L. Turk. J. Chem. 29, 163-169.
  6. Hearing, V. J. and Jimenez, M. (1987) Mammalian tyrosinase-the critical regulatory control point in melanocyte pigmentation. Int. J. Biochem. 19, 1141-1147. https://doi.org/10.1016/0020-711X(87)90095-4
  7. Hosoi, J., Abe, E., Suda, T. and Kuroki, T. (1985) Regulation of melanin synthesis of B16 mouse cells by 1-${\alpha}$-25-dihydroxy vitamin D3 and retinoic acid. Cancer Res. 45, 1474-1478.
  8. Hwang, J. H. and Lee, B. M. (2007) Inhibitory effects of plant extracts on tyrosinase, l-DOPA oxidation, and melanin synthesis. J. Toxicol. Environ. Health A 70, 393-407. https://doi.org/10.1080/10937400600882871
  9. Jung, M. R., Lee, T. H., Bang, M. H., Kim, H. W., Son, Y. S., Chung, D. K. and Kim J. Y. (2012) Suppression of thymus- and activation-regulated chemokine (TARC/CCL17) production by 3-O-${\beta}$-Dglucopyanosylspinasterol via blocking NF-${\kappa}B$ and STAT1 signaling pathways in TNF-${\alpha}$ and IFN-${\gamma}$-induced HaCaT keratinocytes. Biochem. Biophys. Res. Commun. 427, 236-241. https://doi.org/10.1016/j.bbrc.2012.08.087
  10. Kim, M. H., Jang, J. H., Oh, M. H., Heo, J. H. and Lee M. W. (2014) The comparision of DPPH-scavenging capacity and anti-inflammatory effects of phenolic compounds isolated from the stems of Stewartia koreana Nakai. Nat. Prod. Res. 28, 1409-1412. https://doi.org/10.1080/14786419.2014.905560
  11. Kim, W. S., Park, S. H., Ahn, S. J., Kim, H. K., Park, J. S., Lee, G. Y., Kim, K. J., Whang, K. K., Kang, S. H., Park, B. S. and Sung, J. H. (2008) Whitening effect of adipose-derived stem cells : A critical role of TGF-${\beta}1$. Biol. Pharm. Bull. 31, 606-610. https://doi.org/10.1248/bpb.31.606
  12. Kim, Y. J. and Uyama H. (2005) Tyrosinase inhibitors from natural and synthetic sources : Structure, inhibition mechanism and perspective for the future. Cell. Mol. Life Sci. 62, 1707-1723. https://doi.org/10.1007/s00018-005-5054-y
  13. Ko, H. H., Chiang, Y. C., Tsai, M. H., Liang, C. J. Hsu, L. F., Li, S. Y., Wang, M. C., Yen, F. L. and Lee C. W. (2014) Eupafolin, a skin whitening flavonoid isolated from Phyla nodiflora, down regulated melanogenesis : Role of MAPK and Akt pathways. J. Ethnopharmacol. 151, 386-393. https://doi.org/10.1016/j.jep.2013.10.054
  14. Lee, C. S., Jeong, E. B., Kim, Y. J., Lee, M. S., Seo, S. J., Park, W. H. and Lee M. W. (2013) Quercetin-3-O-(2"-O-galloyl)-${\alpha}$-L-rhamnopyranoside inhibits TNF-${\alpha}$-activated NF-${\kappa}B$-induced inflammatory mediator production by suppressing ERK activation. Int. Immunopharmacol. 16, 481-487. https://doi.org/10.1016/j.intimp.2013.05.001
  15. Lee, S. I., Yang, J. H., and Kim, D. K. (2010a) Antioxidant flavonoids from the twigs of Stewartiakoreana. Biomol. Ther. 18, 191-196. https://doi.org/10.4062/biomolther.2010.18.2.191
  16. Lee, S. Y., Kim, K. H., Lee, I. K., Lee, K. H., Choi, S. U. and Lee, K. R. (2012a) A new flavonol glycoside from Hylomecon vernalis. Arch. Pharm. Res. 35, 415-421. https://doi.org/10.1007/s12272-012-0303-8
  17. Lee, T. H., Jung, M. R., Bang, M. H., Chung, D. K. and Kim, J. Y. (2012b) Inhibitory effects of a spinasterol glycoside on lipopolysaccharideinduced production of nitric oxide and proinflammatory cytokines via down-regulating MAP kinase pathways and NF-${\kappa}B$ activation in RAW264.7 macrophage cells. Int. Immunopharmacol. 13, 264-270. https://doi.org/10.1016/j.intimp.2012.05.005
  18. Lee, T. H., Lee, G. W., Kim, C. W., Bang, M. H., Beak, N. I., Kim, S. H., Chung, D. H., and Kim, J. Y. (2010b) Stewartia Koreana extract stimulates proliferation and migration of human endothelial cells and induces neovasculization in vivo. Phytother. Res. 24, 20-25. https://doi.org/10.1002/ptr.2851
  19. Liang, Z., Zhongyang, D., Peng, X., Yuhong, W., Zhenghua, G., Zhu, Q., Guiyang, S. and Kechang, Z. (2011) Methyl lucidenate F isolated from the ethanol-soluble-acidic components of Ganodermalucidumis a novel tyrosinaseinhibitor. Biotechnol. Bioprocess Eng. 16, 457-461. https://doi.org/10.1007/s12257-010-0345-z
  20. Maeda, K. and Fukuda, M. (1991) In vitro effectiveness of several whitening cosmetic components in human melanocytes. J. Soc. Cosmet. Chem. 42, 361-368.
  21. Meshram, G., Patil, B., Yadav, S., and Shined, D. (2011) Isolation and characterization of gallic acid from Terminalia bellerica and its effect on carbohydrate regulatory system in vitro. Int. J. Res. Ayurveda Pharm. 2, 559-562.
  22. Momtaz, S., Lall, N. and Basson, A. (2008) Inhibitory activities of mushroom tyrosine and DOPA oxidation by plant extracts. S. Afr. J. Bot. 74, 577-582. https://doi.org/10.1016/j.sajb.2008.02.005
  23. Ohad, N., Ramadan, M., Soliman, K., Snait, T. and Jacob, V. (2004) Chalcones as potent tyrosinase inhibitors: the effect of hydroxyl positions and numbers. Phytochemistry 65, 1389-1395. https://doi.org/10.1016/j.phytochem.2004.04.016
  24. Park, C. K., Kim, H. J., Kwak, H. B., Lee, T. H., Bang, M. H., Kim, C. M., Lee, Y. K., Chung, D. H., Beak, N. I., Kim, J. Y., Lee, Z. H., and Kim, H. H. (2007) Inhibitory effects of Stewartia koreana on osteoclast differentiation and bone resorption. Int. Immunopharmacol. 7, 1507-1516. https://doi.org/10.1016/j.intimp.2007.07.016
  25. Park, H. J., Park, K. K., Hwang, J. K., Chung, W. Y., Lee, S. E. and Lee S. K. (2010) Inhibitory effects of plant extracts on tyrosinase activity and melanin synthesis. Nat. Prod. Sci. 16, 133-139.
  26. Pyo, M. K., Koo, Y. K. and Choi, H. S. (2002) Anti-platelet effect of the phenolic constituents isolated from the leaves of Magnolia obovota. Nat. Prod. Sci. 8, 147-151.
  27. Seo, S. Y., Sharma, V. K. and Sharma, N. (2003) Mushroom tyrosinase : recent prospects. J. Agric. Food Chem. 51, 2837-2853. https://doi.org/10.1021/jf020826f
  28. Solano, F., Briganti, S., Picardo, M. and Ghanem, G. (2006) Hypopigmenting agents: an updated review on biological, chemical and clinical aspects. Pigment Cell Res. 19, 550-571 https://doi.org/10.1111/j.1600-0749.2006.00334.x
  29. Souichi, N., Hisashi, M., Yoshimi, O., Seikou, N., Fengming, X. and Masayuki Y. (2010) Melanogenesis inhibitors from the desert plant Anastatica hierochuntica in B16 melanoma cells. Bioorg. Med. Chem. 18, 2337-2345. https://doi.org/10.1016/j.bmc.2010.01.046
  30. Stefania, B., Emanuela, C. and Mauro, P. (2003) Chemical and instrumental approaches to treat hyperpigmentation. Pigment Cell Res. 16, 101-110. https://doi.org/10.1034/j.1600-0749.2003.00029.x
  31. Su, T. R., Lin, J. J., Tsai, C. C., Huang, T. K., Yang, Z. Y., Wu, M. O., Zheng, Y. Q., Su, C. C. and Wu, Y. J. (2013) Inhibition of melanogenesis by gallicacid: possible involvement of the PI3K/Akt, MEK/ERK and Wnt/${\beta}$-catenin signaling pathways in B16F10 cells. Int. J. Mol. Sci. 14, 20443-20458. https://doi.org/10.3390/ijms141020443
  32. Sugumaran, M. (2002) Comparative biochemistry of eumelanogenesis and the protective roles of phenoloxidase and melanin in insects. Pigment Cell Res. 15, 2-9. https://doi.org/10.1034/j.1600-0749.2002.00056.x
  33. Susanne, S., Nadine, H., and Thomas, H. (2004) Identification of the astringent taste compounds in black tea infusions by combining instrumental analysis and human bioresponse. J. Agric. Food Chem. 52, 3498-3508. https://doi.org/10.1021/jf049802u

Cited by

  1. Optimizing subcritical water extraction of Morus nigra L. fruits for maximization of tyrosinase inhibitory activity vol.127, 2017, https://doi.org/10.1016/j.supflu.2017.03.007
  2. Crystal structure dependent in vitro antioxidant activity of biocompatible calcium gallate MOFs vol.5, pp.15, 2017, https://doi.org/10.1039/C6TB03101C
  3. The Potential of Plant Phenolics in Prevention and Therapy of Skin Disorders vol.17, pp.2, 2016, https://doi.org/10.3390/ijms17020160
  4. Inhibitory Effects of Flavonoids Isolated from the Leaves of Stewartia koreana on Nitric-oxide Production in LPS-stimulated RAW 264.7 Cells vol.28, pp.5, 2015, https://doi.org/10.5352/jls.2018.28.5.509
  5. Advances in the Tyrosinase Inhibitors from Plant Source vol.26, pp.18, 2015, https://doi.org/10.2174/0929867325666180522091311
  6. Stewartiacids A-N, C-23 carboxylated triterpenoids from Chinese Stewartia and their inhibitory effects against ATP-citrate lyase and NF-κB vol.10, pp.6, 2020, https://doi.org/10.1039/c9ra09542j
  7. 감나무 잎으로부터 분리된 플라보노이드의 동시 정량분석 vol.51, pp.2, 2020, https://doi.org/10.22889/kjp.2020.51.2.139
  8. Mini Review: Antioxidant Application of Metal-Organic Frameworks and Their Composites vol.102, pp.4, 2015, https://doi.org/10.3987/rev-20-942
  9. 노각나무 잎과 가지 추출물의 항산화 효과 vol.31, pp.2, 2015, https://doi.org/10.5352/jls.2021.31.2.229
  10. Porphyromonas gingivalis에 대한 노각나무 잎 추출물의 항균활성 및 생물막 형성 억제 효과 vol.31, pp.3, 2015, https://doi.org/10.5352/jls.2021.31.3.330
  11. Acylated saponins and flavonoid glycosides from the fruits of Stewartia koreana vol.193, pp.None, 2015, https://doi.org/10.1016/j.phytochem.2021.112980