DOI QR코드

DOI QR Code

Treatment of GABA from Fermented Rice Germ Ameliorates Caffeine-Induced Sleep Disturbance in Mice

  • Mabunga, Darine Froy N. (Department of Neuroscience, School of Medicine, and Neuroscience Research Center, SMART-IABS and KU Open Innovation Center, Konkuk University) ;
  • Gonzales, Edson Luck T. (Department of Neuroscience, School of Medicine, and Neuroscience Research Center, SMART-IABS and KU Open Innovation Center, Konkuk University) ;
  • Kim, Hee Jin (Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University) ;
  • Choung, Se Young (Department of Preventive Pharmacy and Toxicology, College of Pharmacy, Kyung Hee University)
  • Received : 2015.02.25
  • Accepted : 2015.03.10
  • Published : 2015.05.01

Abstract

${\gamma}$-Aminobutyric acid (GABA), a major inhibitory neurotransmitter in the mammalian central nervous system, is involved in sleep physiology. Caffeine is widely used psychoactive substance known to induce wakefulness and insomnia to its consumers. This study was performed to examine whether GABA extracts from fermented rice germ ameliorates caffeine-induced sleep disturbance in mice, without affecting spontaneous locomotor activity and motor coordination. Indeed, caffeine (10 mg/kg, i.p.) delayed sleep onset and reduced sleep duration of mice. Conversely, rice germ ferment extracts-GABA treatment (10, 30, or 100 mg/kg, p.o.), especially at 100 mg/kg, normalized the sleep disturbance induced by caffeine. In locomotor tests, rice germ ferment extracts-GABA slightly but not significantly reduced the caffeine-induced increase in locomotor activity without affecting motor coordination. Additionally, rice germ ferment extracts-GABA per se did not affect the spontaneous locomotor activity and motor coordination of mice. In conclusion, rice germ ferment extracts-GABA supplementation can counter the sleep disturbance induced by caffeine, without affecting the general locomotor activities of mice.

Keywords

References

  1. Ahn, J. H., Im, C., Park, J. H., Choung, S. Y., Lee, S., Choi, J., Won, M. H. and Kang, I. J. (2014) Hypnotic effect of GABA from rice germ and/or tryptophan in a mouse model of pentothal-induced sleep. Food Sci. Biotechnol. 23, 1683-1688. https://doi.org/10.1007/s10068-014-0229-7
  2. Akama, K., Kanetou, J., Shimosaki, S., Kawakami, K., Tsuchikura, S. and Takaiwa, F. (2009) Seed-specific expression of truncated OsGAD2 produces GABA-enriched rice grains that influence a decrease in blood pressure in spontaneously hypertensive rats. Transgenic. Res. 18, 865-876. https://doi.org/10.1007/s11248-009-9272-1
  3. Baldwin, H. A. and File, S. E. (1989) Caffeine-induced anxiogenesis: The role of adenosine, benzodiazepine and noradrenergic receptors. Pharmacol. Biochem. Behav. 32, 181-186. https://doi.org/10.1016/0091-3057(89)90230-X
  4. Barone, J. J. and Roberts, H. R. (1996) Caffeine consumption. Food Chem. Toxicol. 34, 119-129. https://doi.org/10.1016/0278-6915(95)00093-3
  5. Beckford K, Grimes, C. A. and Riddell, L. J. (2015) Australian children's consumption of caffeinated, formulated beverages: a crosssectional analysis. BMC Public Health 15, 70. https://doi.org/10.1186/s12889-015-1443-9
  6. Caballero, M., Nunez, F., Ahern, S., Cuffi, M. L., Carbonell, L., Sanchez, S., Fernandez-Duenas, V. and Ciruela, F. (2011) Caffeine improves attention deficit in neonatal 6-OHDA lesioned rats, an animal model of attention deficit hyperactivity disorder (ADHD). Neurosci. Lett. 494, 44-48. https://doi.org/10.1016/j.neulet.2011.02.050
  7. Concas, A., Porcu, P., Sogliano, C., Serra, M., Purdy, R. H. and Biggio, G. (2000) Caffeine-induced increases in the brain and plasma concentrations of neuroactive steroids in the rat. Pharmacol. Biochem. Behav. 66, 39-45. https://doi.org/10.1016/S0091-3057(00)00237-9
  8. dela Pena, I., Gonzales, E. L., de la Pena, J. B., Kim, B.-N., Han, D. H., Shin, C. Y. and Cheong, J. H. (2014) Individual differences in novelty-seeking behavior in spontaneously hypertensive rats: Enhanced sensitivity to the reinforcing effect of methylphenidate in the high novelty-preferring subpopulation. J. Neurosci. Methods. [Epub ahead of print]
  9. Dunwiddie, T. V. and Masino, S. A. (2001) The role and regulation of adenosine in the central nervous system. Annu. Rev. Neurosci. 24, 31-55. https://doi.org/10.1146/annurev.neuro.24.1.31
  10. Estler, C. J. (1979) Influence of pimozide on the locomotor hyperactivity produced by caffeine. J. Pharm. Pharmacol. 31, 126-127. https://doi.org/10.1111/j.2042-7158.1979.tb13453.x
  11. Fitt, E., Pell, D. and Cole, D. (2013) Assessing caffeine intake in the United Kingdom diet. Food Chem. 140, 421-426. https://doi.org/10.1016/j.foodchem.2012.07.092
  12. Frary, C. D., Johnson, R. K. and Wang, M. Q. (2005) Food sources and intakes of caffeine in the diets of persons in the United States. J. Am. Diet. Assoc. 105, 110-113.
  13. Fredholm, B. B., Battig, K., Holmen, J., Nehlig, A. and Zvartau, E. E. (1999) Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol. Rev. 51, 83-133.
  14. French, S. A., Lin, B. H. and Guthrie, J. F. (2003) National trends in soft drink consumption among children and adolescents age 6 to 17 years: Prevalence, amounts, and sources, 1977/1978 to 1994/1998. J. Am. Diet. Assoc. 103, 1326-1331. https://doi.org/10.1016/S0002-8223(03)01076-9
  15. Gottesmann, C. (2002) GABA mechanisms and sleep. Neuroscience 111, 231-239. https://doi.org/10.1016/S0306-4522(02)00034-9
  16. Heckman, M. A., Weil, J. and De Mejia, E. G. (2010) Caffeine (1, 3, 7-trimethylxanthine) in Foods: A comprehensive review on consumption, functionality, safety, and regulatory matters. J. Food Sci. 75, R77-R87. https://doi.org/10.1111/j.1750-3841.2010.01561.x
  17. Hino, A., Adachi, H., Enomoto, M., Furuki, K., Shigetoh, Y., Ohtsuka, M., Kumagae, S.-I., Hirai, Y., Jalaldin, A., Satoh, A. and Imaizumi, T. (2007) Habitual coffee but not green tea consumption is inversely associated with metabolic syndrome: An epidemiological study in a general Japanese population. Diabetes Res. Clin. Pract. 76, 383-389. https://doi.org/10.1016/j.diabres.2006.09.033
  18. Huang, Z. L., Qu, W. M., Eguchi, N., Chen, J. F., Schwarzschild, M. A., Fredholm, B. B., Urade, Y. and Hayaishi, O. (2005) Adenosine A2A, but not A1, receptors mediate the arousal effect of caffeine. Nat. Neurosci. 8, 858-859. https://doi.org/10.1038/nn1491
  19. Ioannidis, K., Chamberlain, S. R. and Muller, U. (2014) Ostracising caffeine from the pharmacological arsenal for attention-deficit hyperactivity disorder-was this a correct decision? A literature review. J. Psychopharmacol. 28, 830-836. https://doi.org/10.1177/0269881114541014
  20. Jain, N. S., Hirani, K. and Chopde, C. T. (2005) Reversal of caffeine-induced anxiety by neurosteroid 3-alpha-hydroxy-5-alpha-pregnane-20-one in rats. Neuropharmacology 48, 627-638. https://doi.org/10.1016/j.neuropharm.2004.11.016
  21. Juhasz, G., Emri, Z., Kekesi, K. and Pungor, K. (1989) Local perfusion of the thalamus with GABA increases sleep and induces longlasting inhibition of somatosensory event-related potentials in cats. Neurosci. Lett. 103, 229-233. https://doi.org/10.1016/0304-3940(89)90581-8
  22. Kardos, J. and Blandl, T. (1994) Inhibition of a gamma aminobutyric acid A receptor by caffeine. Neuroreport 5, 1249-1252. https://doi.org/10.1097/00001756-199406020-00023
  23. Kim, S., Oh, S., Jeong, M., Cho, S., Kook, M., Lee, S., Pyun, Y. and Lee, H. (2010) Sleep-inductive effect of GABA on the fermentation of mono sodium glutamate (MSG). Korean J. Food Sci. Technol. 42, 142-146
  24. Komatsuzaki, N., Tsukahara, K., Toyoshima, H., Suzuki, T., Shimizu, N. and Kimura, T. (2007) Effect of soaking and gaseous treatment on GABA content in germinated brown rice. J. Food Eng. 78, 556-560. https://doi.org/10.1016/j.jfoodeng.2005.10.036
  25. Landolt, H. P., Retey, J. V., Tonz, K., Gottselig, J. M., Khatami, R., Buckelmuller, I. and Achermann, P. (2004) Caffeine attenuates waking and sleep electroencephalographic markers of sleep homeostasis in humans. Neuropsychopharmacology 29, 1933-1939. https://doi.org/10.1038/sj.npp.1300526
  26. Liu, Z. W. and Gao, X. B. (2007) Adenosine inhibits activity of hypocretin/orexin neurons by the A1 receptor in the lateral hypothalamus: a possible sleep-promoting effect. J. Neurophysiol. 97, 837-848. https://doi.org/10.1152/jn.00873.2006
  27. Ma, Y., Ma, H., Eun, J. S., Nam, S. Y., Kim, Y. B., Hong, J. T., Lee, M. K. and Oh, K. W. (2009) Methanol extract of Longanae Arillus augments pentobarbital-induced sleep behaviors through the modification of GABAergic systems. J. Ethnopharmacol. 122, 245-250. https://doi.org/10.1016/j.jep.2009.01.012
  28. Mathias, S., Wetter, T. C., Steiger, A. and Lancel, M. (2001) The GABA uptake inhibitor tiagabine promotes slow wave sleep in normal elderly subjects. Neurobiol. Aging 22, 247-253. https://doi.org/10.1016/S0197-4580(00)00232-3
  29. Mitchell, D. C., Knight, C. A., Hockenberry, J., Teplansky, R. and Hartman, T. J. (2014) Beverage caffeine intakes in the US. Food Chem. Toxicol. 63, 136-142. https://doi.org/10.1016/j.fct.2013.10.042
  30. Nakamura, H., Takishima, T., Kometani, T. and Yokogoshi, H. (2009) Psychological stress-reducing effect of chocolate enriched with ${\gamma}$-aminobutyric acid (GABA) in humans: assessment of stress using heart rate variability and salivary chromogranin A. Int. J. Food Sci. Nutr. 60, 106-113. https://doi.org/10.1080/09637480802558508
  31. Nakamura, T., Matsubayashi, T., Kamachi, K., Hasegawa, T., Ando, Y. and Omori, M. (2000) ${\gamma}$-Aminobutyric acid (GABA)-rich Chlorella depresses the elevation of blood pressure in spontaneously hypertensive rats (SHR). Nippon Nogeikagaku Kaishi 74, 907-909.
  32. Narayan, V. S. and Nair, P. M. (1990) Metabolism, enzymology and possible roles of 4-aminobutyrate in higher plants. Phytochemistry 29, 367-375. https://doi.org/10.1016/0031-9422(90)85081-P
  33. Oh, C. H. and Oh, S. H. (2004) Effects of germinated brown rice extracts with enhanced levels of GABA on cancer cell proliferation and apoptosis. J. Med. Food 7, 19-23. https://doi.org/10.1089/109662004322984653
  34. Oh, S. H. (2003) Stimulation of gamma-aminobutyric acid synthesis activity in brown rice by a chitosan/glutamic acid germination solution and calcium/calmodulin. J. Biochem. Mol. Biol. 36, 319-325. https://doi.org/10.5483/BMBRep.2003.36.3.319
  35. Ojima, K., Matsumoto, K., Tohda, M. and Watanabe, H. (1995) Hyperactivity of central noradrenergic and CRF systems is involved in social isolation-induced decrease in pentobarbital sleep. Brain Res. 684, 87-94. https://doi.org/10.1016/0006-8993(95)00388-7
  36. Pandolfo, P., Machado, N. J., Kofalvi, A., Takahashi, R. N. and Cunha, R. A. (2013) Caffeine regulates frontocorticostriatal dopamine transporter density and improves attention and cognitive deficits in an animal model of attention deficit hyperactivity disorder. Eur. Neuropsychopharmacol 23, 317-328. https://doi.org/10.1016/j.euroneuro.2012.04.011
  37. Saikusa, T., Horino, T. and Mori, Y. (1994) Accumulation of ${\gamma}$-aminobutyric acid (GABA) in the rice germ during water soaking. Biosci. Biotechnol. Biochem. 58, 2291-2292. https://doi.org/10.1271/bbb.58.2291
  38. Shirlow, M. and Mathers, C. (1985) A study of caffeine consumption and symptoms: indigestion, palpitations, tremor, headache and insomnia. Int. J. Epidermiol. 14, 239-248. https://doi.org/10.1093/ije/14.2.239
  39. Skoog, K. M., Cain, S. T. and Nemeroff, C. B. (1986) Centrally administered neurotensin suppresses locomotor hyperactivity induced by d-amphetamine but not by scopolamine or caffeine. Neuropharmacol. 25, 777-782. https://doi.org/10.1016/0028-3908(86)90095-X
  40. Smit, H. J. and Rogers, P. J. (2002) Effects of 'energy' drinks on mood and mental performance: critical methodology. Food Qual. Prefer. 13, 317-326. https://doi.org/10.1016/S0950-3293(02)00044-7
  41. Smith, A. (2002) Effects of caffeine on human behavior. Food Chem. Toxicol. 40, 1243-1255. https://doi.org/10.1016/S0278-6915(02)00096-0
  42. Tian, J., Yong, J., Dang, H. and Kaufman, D. L. (2011) Oral GABA treatment downregulates inflammatory responses in a mouse model of rheumatoid arthritis. Autoimmunity 44, 465-470. https://doi.org/10.3109/08916934.2011.571223
  43. Turek, F. W. and Losee-Olson, S. (1986) A benzodiazepine used in the treatment of insomnia phase-shifts the mammalian circadian clock. Nature 321, 167-186. https://doi.org/10.1038/321167a0
  44. Vuillermot, S., Joodmardi, E., Perlmann, T., Ove Ogren, S., Feldon, J. and Meyer, U. (2011) Schizophrenia-relevant behaviors in a genetic mouse model of constitutive Nurr1 deficiency. Genes Brain Behav. 10, 589-603. https://doi.org/10.1111/j.1601-183X.2011.00698.x
  45. Watanabe, M., Maemura, K., Kanbara, K., Tamayama, T. and Hayasaki, H. (2002) GABA and GABA receptors in the central nervous system and other organs. Int. Rev. Cytol. 213, 1-47. https://doi.org/10.1016/S0074-7696(02)13011-7
  46. Westerterp-Plantenga, M., Diepvens, K., Joosen, A. M. C. P., Berube-Parent, S. and Tremblay, A. (2006) Metabolic effects of spices, teas, and caffeine. Physiol. Behav. 89, 85-91. https://doi.org/10.1016/j.physbeh.2006.01.027
  47. Youngstedt, S. D., O'Connor, P. J., Crabbe, J. B. and Dishman, R. K. (1998) Acute exercise reduces caffeine-induced anxiogenesis. Med. Sci. Sports Exerc. 30, 740-745. https://doi.org/10.1097/00005768-199805000-00015

Cited by

  1. Fermented Rice Germ Extract Alleviates Morphological and Functional Damage to Murine Gastrocnemius Muscle by Inactivation of AMP-Activated Protein Kinase 2017, https://doi.org/10.1089/jmf.2016.3906
  2. Effect of Low and High-Dose GABA from Unpolished Rice-Germ on Timing and Quality of Sleep: A Randomized Double-Blind Placebo-Controlled Trial vol.13, pp.2, 2016, https://doi.org/10.13078/jsm.16011
  3. Effects of Fermented Edible Seeds and Their Products on Human Health: Bioactive Components and Bioactivities vol.16, pp.3, 2017, https://doi.org/10.1111/1541-4337.12257
  4. Rearing in an enriched environment attenuated hyperactivity and inattention in the Spontaneously Hypertensive Rats, an animal model of Attention-Deficit Hyperactivity Disorder vol.155, 2016, https://doi.org/10.1016/j.physbeh.2015.11.035
  5. Biotransformation of monosodium glutamate to gamma-aminobutyric acid by isolated strain Lactobacillus brevis L-32 for potentiation of pentobarbital-induced sleep in mice vol.31, pp.2, 2017, https://doi.org/10.1080/08905436.2017.1301821
  6. Effects of the perinatal exposure of Gum Arabic on the development, behavior and biochemical parameters of mice offspring 2018, https://doi.org/10.1016/j.sjbs.2016.04.008
  7. Fermented foods, the gut and mental health: a mechanistic overview with implications for depression and anxiety pp.1476-8305, 2018, https://doi.org/10.1080/1028415X.2018.1544332
  8. Evodiamine Reduces Caffeine-Induced Sleep Disturbances and Excitation in Mice vol.26, pp.5, 2018, https://doi.org/10.4062/biomolther.2017.146
  9. Safety and Efficacy of Gamma-Aminobutyric Acid from Fermented Rice Germ in Patients with Insomnia Symptoms: A Randomized, Double-Blind Trial vol.14, pp.3, 2018, https://doi.org/10.3988/jcn.2018.14.3.291
  10. Linalool Ameliorates Memory Loss and Behavioral Impairment Induced by REM-Sleep Deprivation through the Serotonergic Pathway vol.26, pp.4, 2018, https://doi.org/10.4062/biomolther.2018.081
  11. Two combined amino acids promote sleep activity in caffeine-induced sleepless model systems vol.12, pp.3, 2018, https://doi.org/10.4162/nrp.2018.12.3.208
  12. 미생물 발효 쌀 배아의 품질특성 및 생리활성 vol.30, pp.1, 2015, https://doi.org/10.9799/ksfan.2017.30.1.059
  13. Fermentation Biotechnology Applied to Cereal Industry By-Products: Nutritional and Functional Insights vol.6, pp.None, 2015, https://doi.org/10.3389/fnut.2019.00042
  14. Yokukansankachimpihange Improves the Social Isolation-Induced Sleep Disruption and Allopregnanolone Reduction in Mice vol.7, pp.None, 2020, https://doi.org/10.3389/fnut.2020.00008
  15. Beneficial effect of GABA-rich fermented milk on insomnia involving regulation of gut microbiota vol.233, pp.None, 2015, https://doi.org/10.1016/j.micres.2020.126409
  16. Fermented Rice Germ Extract Ameliorates Abnormal Glucose Metabolism via Antioxidant Activity in Type 2 Diabetes Mellitus Mice vol.11, pp.7, 2015, https://doi.org/10.3390/app11073091