DOI QR코드

DOI QR Code

Rheological Characteristics and Molecular Weight of Ammonium-Sulfate Fractions of Tara Gum

염석법에 의한 타라검 분획들의 분자량 및 리올로지 특성

  • Kim, Kyeong-Yee (Department of Food Science and Biotechnology, Seoil University)
  • 김경이 (서일대학교 식품과학부 식품생명과학전공)
  • Received : 2015.01.18
  • Accepted : 2015.03.16
  • Published : 2015.06.30

Abstract

This study aimed at characterizing the rheological properties and molecular weight of tara gum fractionated with ammonium sulfate. Tara gum was separated into six fractions (F1-F6) at different concentrations of ammonium sulfate, ranging from 12.21 to 28.67% (w/w). The yield of the tara gum fractions ranged between 4.98 and 17.47%, and their intrinsic viscosity ranged from 9.38 to 12.44 dL/g. The highest values of Huggins coefficient (k') and viscosity-molecular mass were observed in fraction F3. The shear viscosity of the tara gum fractions was measured by a cone-plate viscometer, clearly showing shear thinning behavior. Size-exclusion chromatography results showed that the molecular weight ranged between 635.42 and 776.71 kg/mol, and the F3 fraction exhibited higher values of molecular weight.

$(1{\rightarrow}4)-{\beta}-{\small{D}}-mannopyranosyl$ 골격에 $(1{\rightarrow}6)-{\alpha}-{\small{D}}-galactopyranosyl$ 곁사슬을 갖는 직선사슬로 구성된 다당류로 강한 점성을 나타내는 타라검을 황산암모늄 침전법을 사용하여 분획하였다. 황산암모늄 농도에 따라 얻어진 침전물을 원심분리 및 투석 후 동결상태에서 건조시켜서 첫 번째 분획물을 얻고 동일한 방법으로 각 단계별 분획물을 얻어 F1, F2, F3, F4, F5, F6으로 표기하였다. 각 분획물들의 묽은 농도범위 0.05 g/dL 이하에서 우베로드 점도계로 흐르는 시간을 측정하여 본성 점도를 구하였으며 그 값은 F1: 12.24, F2: 9.38, F3: 12.44, F4: 11.14, F5: 10.51, F6: 10.17dL/g이었다. F1과 F2 분획물이 갖는 본성 점도는 기대 값보다 작았고 그 원인은 단백질 성분이 비교적 많이 포함되어 분자 간 상호작용으로 생긴 용해도에 미치는 영향으로 판단되었다. 또한 고분자 물질의 용질-용매간의 상호작용과 응집상태에 의존하는 상태를 나타내는 Huggins 계수(k')값을 측정한 결과 점도 값이 클수록 k'값이 커지는 경향을 나타내었다. 원뿔 평판 점도계로 겉보기 점도를 측정하여 전단속도가 증가함에 따라 점도가 감소하는 전단 묽어짐 현상을 확인하였다. SEC 측정으로 중량평균 분자량, 수 평균 분자량, 회전 반경 및 본성 점도 값들이 $c_p=0.5mg/mL$, dn/dc=0.145의 RI 피크면적으로 계산되었다. 본성 점도 값은 F3:1 0.93, F4: 10.01, F5: 9.33, F6: 9.33 dL/g이었고 Mw: 658.52-776.71, Mn: 318.04-495.78 및 Mz: 952.74-1126.00 kg/mol이었다. 타라검 분획물들의 분자량과 유변학적 성질에 관한 연구로부터 화학물질에 대한 안정제 및 식품첨가제로서의 효과를 높이고 점성 강화제로 사용되는 범위가 확대될 것으로 기대된다.

Keywords

References

  1. Dey PM. Biochemistry of plant galactomannans. Adv. Carbohyd. Chem. Bi. 35: 341-376 (1978) https://doi.org/10.1016/S0065-2318(08)60221-8
  2. Daas PJH, Schols HA, De Jonh HHJ. On the galactosyl distribution og commercial galactomannans. Carbohyd. Res. 329: 609-619 (2000) https://doi.org/10.1016/S0008-6215(00)00209-3
  3. Mikkonen KS, Rita H, Helen H, Talja RA, Hyvonen L, Tenkanen M. Effect of polysaccharide structure on mechanical and thermal properties of galactomannan-based films. Biomacromolecules 8: 3198-3205 (2007) https://doi.org/10.1021/bm700538c
  4. Cui W, Eskin NAM, Biliaderis CG, Mazza G. Synergistic interactions between yellow mustard polysaccharades and galactomannans. Carbohyd. Polym. 27: 123-127 (1995) https://doi.org/10.1016/0144-8617(95)00041-5
  5. Savitha Prashanth MR, Parvathy KS, Susheelamma NS, Harish Prashanth KV, Tharanathan RN. Cha A, Anilkumar G. Galactomannan esters-A simple, cost-effective method of preparation and characterization. Food Hydrocolloid. 20: 1198-1205 (2006) https://doi.org/10.1016/j.foodhyd.2006.01.004
  6. Wu Y, Cui W, Eskin NAM, Goff HD. An investigation of four commercial galactomannans on their emulsion and rheological properties. Food Res. Int. 42: 1141-1146 (2009) https://doi.org/10.1016/j.foodres.2009.05.015
  7. Wu Y, Li W, Cui W, Eskin NAM, Goff HD. A molecular modeling approach to understand conformation-functionality relationships of galactomannans with different mannose/galactose ratios. Food Hydrocolloid. 26: 359-364 (2012) https://doi.org/10.1016/j.foodhyd.2011.02.029
  8. Chandrasekaran R, Radha A, Okuyama K. Morphology of galactomannans: An X-ray structure analysis of guaran. Carbohyd. Res. 306: 243-255 (1998) https://doi.org/10.1016/S0008-6215(97)00274-7
  9. Daas PJH, Schols HA, De Jongh HHJ. On the galactosyl distribution of commercial galactomannans. Carbohyd. Res. 329: 609-619 (2000) https://doi.org/10.1016/S0008-6215(00)00209-3
  10. Antoniou J, Liu F, Majeed H, Jamshaid Qazi H, Zhong F. Physicochemical and thermomechanical characterization of tara gum edible films: Effect of polyols as plasticizers. Carbohyd. Polym. 111: 359-365 (2014) https://doi.org/10.1016/j.carbpol.2014.04.005
  11. Da Silva MV, Delgado JMPQ, Goncalves MP. Impact of $MG^{2+}$and tara gum concentrations on flow and textural properties of WPI solutions and cold-set gels. Int. J. Food Prop. 13: 972-982 (2010) https://doi.org/10.1080/10942910902927128
  12. Borzelleca JF, Ladu BN, Senti FR, Egle Jr JL. Evaluation of the safety of tara gum as a food ingredient. A review of the literature. Int. J. Toxicol. 12: 81-89 (1993) https://doi.org/10.3109/10915819309140625
  13. Takahashi M, Hatakeyama T, Hatakeyama H. Phenomenological theory describing the behaviour of non-freezing water in structure formation process of polysaccharide aqueous solutions. Carbohyd. Polym. 41: 91-95 (2000) https://doi.org/10.1016/S0144-8617(99)00114-9
  14. Naoi S, Hatakeyama T, Hatakeyma H. Phase transition of logust bean gum-, tara gum- and guar gum- water systems. J. Therm. Anal. Calorim. 70: 841-852 (2002) https://doi.org/10.1023/A:1022260304686
  15. Resch JJ, Daubert CR. Rheological and physicochemical properties of derivatized whey protein concentrate powders. Int. J. Food Prop. 5: 419-434 (2002) https://doi.org/10.1081/JFP-120005795
  16. Bryant CM, McClements DJ. Influence of NaCl and $CaC_{l2}$ on cold-set gelation of heat-denatured whey protein. J. Food Sci. 65: 801-804 (2000) https://doi.org/10.1111/j.1365-2621.2000.tb13590.x
  17. Bryant CM, McClements DJ. Influence of xanthan gum on physical characteristics of heat-denatured whey protein solutions and gels. Food Hydrocolloid. 14: 383-390 (2000) https://doi.org/10.1016/S0268-005X(00)00018-7
  18. Marangoni AG, Barbut S, McGauley SE, Marcone M, Narine SS. On the structure of particulate gels-the case of salt-induced cold gelation of heat-denatured whey protein isolate. Food Hydrocolloid. 14: 61-74 (2000) https://doi.org/10.1016/S0268-005X(99)00046-6
  19. Mali S, Sakanaka LS, Yamashita F, Grossmann MVE. Water sorption and mechanical properties of cassava starch films and their relation to plasticizing effect. Carbohyd. Polym. 60: 283-289 (2005) https://doi.org/10.1016/j.carbpol.2005.01.003
  20. Haq MA, Hasnain A, Azam M. Characterition of edible gum cordia film: Effect of plasticizers. LWT-Food Sci. Technol. 55: 163-169 (2014) https://doi.org/10.1016/j.lwt.2013.09.027
  21. Sothornvit R. Krochta JM. Plasticizer effect on mechanical properties of ${\beta}$-lactoglobulin films. J. Food Eng. 50: 149-155 (2001) https://doi.org/10.1016/S0260-8774(00)00237-5
  22. Wang Q, Wood PJ, Huang X, Cui W. Preparation and characterization of molecular weigh standards of low polydispersity from oat and barley ($1{\rightarrow}3$)($1{\rightarrow}4$)-${\beta}$-D-glucan. Food Hydrocolloid. 17: 845-853 (2003) https://doi.org/10.1016/S0268-005X(03)00105-X
  23. Sittikijyothin W, Torres D, Goncalves MP. Modeling the rheological behaviour of galactomannan aqueous solutions. Carbohyd. Polym. 59: 339-350 (2005) https://doi.org/10.1016/j.carbpol.2004.10.005
  24. Pollard MA, Kelly R, Wahl C, Fischer P, Windhab E, Eder B, Amado R. Investigation of equilibrium solubility of a carob galactomannan. Food Hydrocolloid. 21: 683-692 (2006)
  25. Edwards ME, Marshall E, Gidley MJ, Grant Reid JS. Transfer specificity of detergent-solubilized fenugreek galactomannan galactosyltransferase. Plant Physiol. 129: 1391-1397 (2002) https://doi.org/10.1104/pp.002592
  26. Ruiz-Angel MJ, Simo-Alfonso EF, Mongay-Fernandez C, Ramis-Ramos G. Identification of leguminosae gums and evaluation of carob-guar mixtures by capillary zone electrophoresis of protein extracts. Electrophoresis 23: 1709-1715 (2002) https://doi.org/10.1002/1522-2683(200206)23:11<1709::AID-ELPS1709>3.0.CO;2-V
  27. Izawa M, Kano Y, Koshino S. Relationship between structure and solubility of ($1{\rightarrow}3$)($1{\rightarrow}4$)-${\beta}$-D-glucan from barley. J. Am. Soc. Brew. Chem. 51: 123-127 (1993)
  28. Izydorczyk MS, Billaderis CG, Macri LJ, MacGregor AW. Fractionation of oat ($1{\rightarrow}3$)($1{\rightarrow}4$)-${\beta}$-D-glucans and characterisation of the fractions. J. Cereal Sci. 27: 321-325 (1998) https://doi.org/10.1006/jcrs.1997.0166
  29. Anderson DMW. Nitrogen conversion factors for the proteinaceous content of gums permitted as food additives. Food Addit. Contam. 3:231-234 (1986) https://doi.org/10.1080/02652038609373585
  30. Wood PJ, Weisz J, Beer MU, Newman CW, Newman RK. Structure of ($1{\rightarrow}3$)($1{\rightarrow}4$)-${\beta}$-D-glucan in waxy and nonwaxy barley. Cereal Chem. 80: 329-332 (2003) https://doi.org/10.1094/CCHEM.2003.80.3.329
  31. Izydorczyk MS, Billaderis CG. Gradient ammonium sulphate fractionation of galactomannans. Food Hydrocolloid. 10: 295-300 (1996) https://doi.org/10.1016/S0268-005X(96)80004-X
  32. Izydorczyk MS, Billaderis CG. Influence of structure on the physicochemical properties of wheat arabinoxylan. Carbohyd. Polym. 17: 237-247 (1992) https://doi.org/10.1016/0144-8617(92)90010-N
  33. Kim KY, Lee EK. Physicochemical characteristics of galactomannan by fractionation to evaluate heterogeneity. Korean J. Food Sci. Technol. 45:428-433 (2013) https://doi.org/10.9721/KJFST.2013.45.4.428
  34. Andrade CT, Azero EG, Luciano L, Goncalves MP. Solution properties of the galactomannans extracted from the seeds of caesalpinia pulcherrima and cassia javanica: comparison with locust bean gum. Int. J. Biol. Macromol. 26: 181-185 (1999) https://doi.org/10.1016/S0141-8130(99)00075-6
  35. da Silva JAL, Goncalves MP. Studies on a purification method for locust bean gum by precipitation with isopropanol. Food Hydrocolloid. 4: 277-287 (1990) https://doi.org/10.1016/S0268-005X(09)80204-X
  36. McCleary BV, Clark AH, Dea IMC, Rees DA. The fine structures of carob and guar galactomannans. Carbohyd. Res. 139: 237-260 (1985) https://doi.org/10.1016/0008-6215(85)90024-2