References
- McNeil M, Darvill AG, Albersheim P. Structure of plant cell walls: X. Rhamnogalacturonan I, a structurally complex pectic polysaccharide in the walls of suspension-cultured sycamore cells. Plant Physiol. 66: 1128-1134 (1980) https://doi.org/10.1104/pp.66.6.1128
- Shin KS, Lee H. Structural analysis of the unusual sugar-containing oligosaccharides formed by the selective cleavage of weakly acidic polysaccharide. Korean J. Food Sci. Technol. 29: 1105-1112 (1997)
- Ridley BL, O'Neill MA, Mohnen D. Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 57: 929-967 (2001) https://doi.org/10.1016/S0031-9422(01)00113-3
- O'Neill M, Albersheim P, Darvill A. The pectic polysaccharides of primary cell walls. pp. 415-441. In: Methods in Plant Biochemistry. Dey DM, Harborne JB (eds). Academic press, London, England (1990)
- Engelsen SB, Cros S, Mackie W, Perez S. A molecular builder for carbohydrates: application to polysaccharides and complex carbohydrates. Biopolymers 39: 417-433 (1996) https://doi.org/10.1002/(SICI)1097-0282(199609)39:3<417::AID-BIP13>3.3.CO;2-R
- Ishii T, Matsunaga T. Pectic polysaccharide rhamnogalacturonan II is covalently linked to homogalacturonan. Phytochemistry 57: 969-974 (2001) https://doi.org/10.1016/S0031-9422(01)00047-4
- Perez S, Rodriguez-Carvajal M, Doco T. A complex plant cell wall polysaccharide: rhamnogalacturonan II. A structure in quest of a function. Biochimie 85: 109-121 (2003) https://doi.org/10.1016/S0300-9084(03)00053-1
- Srivastava R, Kulshreshtha DK. Bioactive polysacchrides from plant. Phytochemistry 28: 2877-2883 (1989) https://doi.org/10.1016/0031-9422(89)80245-6
- Shin KS. Immunostimulating plant polysaccharides: macrophage immunomodulation and its possible mechanism. Food Sci. Ind. 45: 12-22 (2012)
- Park SB. Isolation of macrophage-stimulating polysaccharide from the citrus peels and its structural characterization. MS thesis, Kyonggi University, Suwon, Korea (2008)
- Aozasa O, Ohta S, Nakao T, Miyata H, Nomura T. Enhancement in fecal excretion of dioxin isomer in mice by several dietary fibers. Chemosphere 45: 195-200 (2001) https://doi.org/10.1016/S0045-6535(00)00557-9
- Sandberg AS, Ahderinne R, Andersson H, Hallgren B, Hulten L. The effect of citrus pectin on the absorption of nutrients in the small intestine. Hum. Nutr-Clin. Nutr. 37: 171-183 (1983)
- Pienta KJ, Nailk H, Akhtar A, Yamazaki K, Replogle TS, Lehr J, Donat TL, Tait L, Hogan V, Raz A. Inhibition of spontaneous metastasis in rat prostate cancer model by oral administration of modified citrus pectin. J. Natl. Cancer I. 87: 348-353 (1995) https://doi.org/10.1093/jnci/87.5.348
- Fernandez ML, Sun DM, Tosca MA, McNamara DJ. Citrus pectin and cholesterol interact to regulate hepatic cholesterol homeostasis and lipoprotein metabolism: a dose-response study in guinea pigs. Am. J. Clin. Nutr. 59: 869-878 (1994) https://doi.org/10.1093/ajcn/59.4.869
- Yang HS, Yu KW, Choi YM. Isolation of polysaccharides modulating mouse's intestinal immune system from peels of Citrus unshiu. J. Korean Soc. Food Sci. Nutr. 33: 1476-1485 (2004) https://doi.org/10.3746/jkfn.2004.33.9.1476
- Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350-356 (1956) https://doi.org/10.1021/ac60111a017
- Blumenkrantz N, Asboe-Hansen G. New method for quantitative determination of uronic acids. Anal. Biochem. 54: 484-489 (1973) https://doi.org/10.1016/0003-2697(73)90377-1
- Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 (1976) https://doi.org/10.1016/0003-2697(76)90527-3
- Karkhanis YD, Zeltner JY, Jackson JJ, Carlo DJ. A new and improved microassay to determine 2-keto-3-deoxyoctonate in lipopolysaccharide of gram-negative bacteria. Anal. Biochem. 85: 595-601 (1978) https://doi.org/10.1016/0003-2697(78)90260-9
- Jones TM, Albersheim P. A gas chromatographic method for the determination of aldose and uronic acid constituents of plant cell wall polysaccharides. Plant Physiol. 49: 926-936 (1972) https://doi.org/10.1104/pp.49.6.926
- Van Holst GJ, Clarke AE. Quantification of arabinogalactan-protein in plant extracts by single radial gel diffusion. Anal. Chem. 148: 446-450 (1985)
- McNeil M, Darvill AG, Aman P, Franzen LE, Albersheim P. Complex carbohydrates. Vol. 83. pp. 3-45. In: Methods in Enzymology. Ginsburg V (ed). Academic Press, New York, NY, USA (1982)
- Yu KW, Kim YS, Shin KS, Kim JM, Suh HJ. Macrophage-stimulating activity of exo-biopolymer from cultured rice bran with Monascus pilosus. Appl. Biochem. Biotechnol. 126: 35-48 (2005) https://doi.org/10.1007/s12010-005-0004-6
- Keller R, Keist R, Wechsler A, Leist TP, van der Meide PH. Mechanisms of macrophage-mediated tumor cell killing: A comparative analysis of the roles of reactive nitrogen intermediates and tumor necrosis factor. Int. J. Cancer 46: 682-686 (1990) https://doi.org/10.1002/ijc.2910460422
- Nathan CF, Henry WM, Zanvil AC. The macrophage as an effector cell. N. Engl. J. Med. 303: 622-626 (1980) https://doi.org/10.1056/NEJM198009113031106
- Wang H, Actor JK, Indrigo J, Olsen M, Dasgupta A. Asian and Siberian ginseng as a potential modulator of immune function: an in vitro cytokine study using mouse macrophages. Clin. Chim. Acta. 327: 123-128 (2003) https://doi.org/10.1016/S0009-8981(02)00343-1
Cited by
- Structural features of immunostimulatory polysaccharide purified from pectinase hydrolysate of barley leaf vol.87, 2016, https://doi.org/10.1016/j.ijbiomac.2016.02.072
- Effect of arabinoxylan- and rhamnogalacturonan I-rich polysaccharides isolated from young barley leaf on intestinal immunostimulatory activity vol.35, 2017, https://doi.org/10.1016/j.jff.2017.05.052