DOI QR코드

DOI QR Code

Rapid Isolation Method for Preparation of Immuno-Stimulating Rhamnogalacturonans in Citrus Peels

귤피 유래 면역활성 람노갈락투로난류의 신속 분리방법

  • Lee, Sue-Jung (Department of Food Science and Biotechnology, Kyonggi University) ;
  • Hong, Hee-Do (Korea Food Research Institute) ;
  • Shin, Kwang-Soon (Department of Food Science and Biotechnology, Kyonggi University)
  • Received : 2014.12.29
  • Accepted : 2015.03.16
  • Published : 2015.06.30

Abstract

We developed a rapid isolation method for fractionation of polysaccharides with different characteristics, and optimized it for the polysaccharide mixture from Korean citrus peels. A crude polysaccharide mixture, citrus-peel-enzyme (CPE) fraction was isolated from the citrus peels digested with pectinase and ethanol precipitation. CPE was further fractionated with serially diluted ethanol solution (ethanol:deionized water=8:1, 4:1, 3:1, 2:1, 1.5:1, 1:1, and 0.5:1) to produce seven fractions labeled from CPE8 to CPE0.5. Fraction from CPE8 to CPE1 were mostly composed of 11 different sugars, including rhamnogalacturonan (RG) I and II, and the sugars contained arabino-${\beta}$-3,6-galactan moiety. However, CPE0.5 did not contain RG-II and arabino-${\beta}$-3,6-galactans. Treatment of macrophages with fractions CPE8-CPE1 led to a dose-dependent increase in interleukin-6 production (IL-6), while treatment with CPE1 and CPE0.5 fractions resulted in decreased levels of IL-6. These results indicate that this isolation method may be useful for the rapid fractionation of bioactive RGs from polysaccharide mixtures.

다당의 생물활성은 다당의 구조적인 특징과 분자량 분포에 의해 중요한 영향을 미치기 때문에, 특정 다당의 정제는 다당 연구를 위해 필수적이다. 따라서 본 연구에서는 서로 다른 특성을 소유한 다당의 분획을 위한 신속 분리 방법을 개발하고 대표 화합물로 한국산 귤피로부터 조제한 다당 혼합물을 이용, 본 분리법을 최적화 하였다. 귤피는 펙티나아제 처리 후 에탄올 침전법을 통해 조다당 획분인 CPE로 조제되었으며, CPE는 재차 농도별로 연속 희석된 에탄올 용액(EtOH:DIW=8:1, 4:1, 3:1, 2:1, 1.5:1, 1:1, 및 0.5:1)을 이용하여 7가지 획분(CPE8-CPE0.5)으로 분획되었다. CPE8-CPE1획분은 구성당 분석 결과 람노갈락투로난-I과 람노갈락투로난-II 다당의 지표 구성당인 총 11종의 서로 다른 당으로 구성되어 있었으며, arabino-${\beta}$-3,6-galactan 잔기를 함유하고 있는 것으로 확인되었다. 그러나 CPE0.5 획분에서는 람노갈락투로난-II 및 arabino-${\beta}$-3,6-galactan 잔기를 함유하고 있지 않았다. 한편, CPE8-CPE1 획분을 처리한 mouse 복강 대식세포에서는 농도의존적으로 IL-6의 생산 증가가 관찰된 반면, CPE1 및 CPE0.5 획분에서는 활성이 급격히 감소됨을 확인 할 수 있었다. 따라서 이상의 결과로부터 분리방법이 다양한 특성을 갖는 다당의 혼합물로부터 생물활성을 갖는 람노갈락투로난류를 신속히 분리하는데 매우 유용한 것으로 판단되었다.

Keywords

References

  1. McNeil M, Darvill AG, Albersheim P. Structure of plant cell walls: X. Rhamnogalacturonan I, a structurally complex pectic polysaccharide in the walls of suspension-cultured sycamore cells. Plant Physiol. 66: 1128-1134 (1980) https://doi.org/10.1104/pp.66.6.1128
  2. Shin KS, Lee H. Structural analysis of the unusual sugar-containing oligosaccharides formed by the selective cleavage of weakly acidic polysaccharide. Korean J. Food Sci. Technol. 29: 1105-1112 (1997)
  3. Ridley BL, O'Neill MA, Mohnen D. Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 57: 929-967 (2001) https://doi.org/10.1016/S0031-9422(01)00113-3
  4. O'Neill M, Albersheim P, Darvill A. The pectic polysaccharides of primary cell walls. pp. 415-441. In: Methods in Plant Biochemistry. Dey DM, Harborne JB (eds). Academic press, London, England (1990)
  5. Engelsen SB, Cros S, Mackie W, Perez S. A molecular builder for carbohydrates: application to polysaccharides and complex carbohydrates. Biopolymers 39: 417-433 (1996) https://doi.org/10.1002/(SICI)1097-0282(199609)39:3<417::AID-BIP13>3.3.CO;2-R
  6. Ishii T, Matsunaga T. Pectic polysaccharide rhamnogalacturonan II is covalently linked to homogalacturonan. Phytochemistry 57: 969-974 (2001) https://doi.org/10.1016/S0031-9422(01)00047-4
  7. Perez S, Rodriguez-Carvajal M, Doco T. A complex plant cell wall polysaccharide: rhamnogalacturonan II. A structure in quest of a function. Biochimie 85: 109-121 (2003) https://doi.org/10.1016/S0300-9084(03)00053-1
  8. Srivastava R, Kulshreshtha DK. Bioactive polysacchrides from plant. Phytochemistry 28: 2877-2883 (1989) https://doi.org/10.1016/0031-9422(89)80245-6
  9. Shin KS. Immunostimulating plant polysaccharides: macrophage immunomodulation and its possible mechanism. Food Sci. Ind. 45: 12-22 (2012)
  10. Park SB. Isolation of macrophage-stimulating polysaccharide from the citrus peels and its structural characterization. MS thesis, Kyonggi University, Suwon, Korea (2008)
  11. Aozasa O, Ohta S, Nakao T, Miyata H, Nomura T. Enhancement in fecal excretion of dioxin isomer in mice by several dietary fibers. Chemosphere 45: 195-200 (2001) https://doi.org/10.1016/S0045-6535(00)00557-9
  12. Sandberg AS, Ahderinne R, Andersson H, Hallgren B, Hulten L. The effect of citrus pectin on the absorption of nutrients in the small intestine. Hum. Nutr-Clin. Nutr. 37: 171-183 (1983)
  13. Pienta KJ, Nailk H, Akhtar A, Yamazaki K, Replogle TS, Lehr J, Donat TL, Tait L, Hogan V, Raz A. Inhibition of spontaneous metastasis in rat prostate cancer model by oral administration of modified citrus pectin. J. Natl. Cancer I. 87: 348-353 (1995) https://doi.org/10.1093/jnci/87.5.348
  14. Fernandez ML, Sun DM, Tosca MA, McNamara DJ. Citrus pectin and cholesterol interact to regulate hepatic cholesterol homeostasis and lipoprotein metabolism: a dose-response study in guinea pigs. Am. J. Clin. Nutr. 59: 869-878 (1994) https://doi.org/10.1093/ajcn/59.4.869
  15. Yang HS, Yu KW, Choi YM. Isolation of polysaccharides modulating mouse's intestinal immune system from peels of Citrus unshiu. J. Korean Soc. Food Sci. Nutr. 33: 1476-1485 (2004) https://doi.org/10.3746/jkfn.2004.33.9.1476
  16. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350-356 (1956) https://doi.org/10.1021/ac60111a017
  17. Blumenkrantz N, Asboe-Hansen G. New method for quantitative determination of uronic acids. Anal. Biochem. 54: 484-489 (1973) https://doi.org/10.1016/0003-2697(73)90377-1
  18. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 (1976) https://doi.org/10.1016/0003-2697(76)90527-3
  19. Karkhanis YD, Zeltner JY, Jackson JJ, Carlo DJ. A new and improved microassay to determine 2-keto-3-deoxyoctonate in lipopolysaccharide of gram-negative bacteria. Anal. Biochem. 85: 595-601 (1978) https://doi.org/10.1016/0003-2697(78)90260-9
  20. Jones TM, Albersheim P. A gas chromatographic method for the determination of aldose and uronic acid constituents of plant cell wall polysaccharides. Plant Physiol. 49: 926-936 (1972) https://doi.org/10.1104/pp.49.6.926
  21. Van Holst GJ, Clarke AE. Quantification of arabinogalactan-protein in plant extracts by single radial gel diffusion. Anal. Chem. 148: 446-450 (1985)
  22. McNeil M, Darvill AG, Aman P, Franzen LE, Albersheim P. Complex carbohydrates. Vol. 83. pp. 3-45. In: Methods in Enzymology. Ginsburg V (ed). Academic Press, New York, NY, USA (1982)
  23. Yu KW, Kim YS, Shin KS, Kim JM, Suh HJ. Macrophage-stimulating activity of exo-biopolymer from cultured rice bran with Monascus pilosus. Appl. Biochem. Biotechnol. 126: 35-48 (2005) https://doi.org/10.1007/s12010-005-0004-6
  24. Keller R, Keist R, Wechsler A, Leist TP, van der Meide PH. Mechanisms of macrophage-mediated tumor cell killing: A comparative analysis of the roles of reactive nitrogen intermediates and tumor necrosis factor. Int. J. Cancer 46: 682-686 (1990) https://doi.org/10.1002/ijc.2910460422
  25. Nathan CF, Henry WM, Zanvil AC. The macrophage as an effector cell. N. Engl. J. Med. 303: 622-626 (1980) https://doi.org/10.1056/NEJM198009113031106
  26. Wang H, Actor JK, Indrigo J, Olsen M, Dasgupta A. Asian and Siberian ginseng as a potential modulator of immune function: an in vitro cytokine study using mouse macrophages. Clin. Chim. Acta. 327: 123-128 (2003) https://doi.org/10.1016/S0009-8981(02)00343-1

Cited by

  1. Structural features of immunostimulatory polysaccharide purified from pectinase hydrolysate of barley leaf vol.87, 2016, https://doi.org/10.1016/j.ijbiomac.2016.02.072
  2. Effect of arabinoxylan- and rhamnogalacturonan I-rich polysaccharides isolated from young barley leaf on intestinal immunostimulatory activity vol.35, 2017, https://doi.org/10.1016/j.jff.2017.05.052