DOI QR코드

DOI QR Code

Robot Control based on Steady-State Visual Evoked Potential using Arduino and Emotiv Epoc

아두이노와 Emotiv Epoc을 이용한 정상상태시각유발전위 (SSVEP) 기반의 로봇 제어

  • Yu, Je-Hun (Department of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Sim, Kwee-Bo (Department of Electrical and Electronics Engineering, Chung-Ang University)
  • 유제훈 (중앙대학교 전자전기공학과) ;
  • 심귀보 (중앙대학교 전자전기공학과)
  • Received : 2015.03.22
  • Accepted : 2015.05.20
  • Published : 2015.06.25

Abstract

In this paper, The wireless robot control system was proposed using Brain-computer interface(BCI) systems based on the steady-state visual evoked potential(SSVEP). Cross Power Spectral Density(CPSD) was used for analysis of electroencephalogram(EEG) and extraction of feature data. And Linear Discriminant Analysis(LDA) and Support Vector Machine(SVM) was used for patterns classification. We obtained the average classification rates of about 70% of each subject. Robot control was implemented using the results of classification of EEG and commanded using bluetooth communication for robot moving.

본 논문은 BCI(Brain Computer Interface)기반의 정상상태시각유발전위(SSVEP : Steady-State Visual Evoked Potential)를 사용하여 무선 로봇 제어를 위한 시스템을 제안하였다. CPSD(Cross Power Spectral Density)를 사용하여 전극의 신호를 분석하였다. 또한 분류를 위해서 LDA(Linear Discriminant Analysis)와 SVM(Support Vector Machine)을 사용하였다. 그 결과 피험자들의 평균 분류율은 약 70%로 나타났다. 로봇제어의 경우 뇌파의 값을 분류하여 나타난 결과 값으로 로봇이 움직일 수 있도록 구현하였고, 블루투스 통신을 이용하여 로봇제어를 수행하였다.

Keywords

References

  1. E. Donchin, K. M. Spencer, and R. Wijesinghe, "The Mental Prosthesis: Assessing the Speed of a P300-Based Brain.Computer Interface" IEEE Transactions on Rehabilitation Engineering, vol. 8, pp. 174-179, 2000 https://doi.org/10.1109/86.847808
  2. D. Zhu, J. Bieger, G. G. Molina, and R. M. Aarts, "A survey of stimulation methods used in SSVEP-based BCIs" Computational Intelligence and Neuroscience, vol. 2010, pp. 66-77, 2010
  3. H. Bakardjian, T. Tanaka, and A. Cichocki, "Optimization of SSVEP brain responses with application to eight-command Brain?Computer Interface" Neuroscience Letters, vol. 469, pp. 34-38, 2010 https://doi.org/10.1016/j.neulet.2009.11.039
  4. K. K. Shyu, P. L. Lee, Y. J. Liu, and J. J. Sie, "Dual-frequency steady-state visual evoked potential for brain computer interface" Neuroscience Letters, vol. 483, pp. 28-31, 2010 https://doi.org/10.1016/j.neulet.2010.07.043
  5. Y. Liu, X. Jiang, T. Cao, F. Wan, P. U. Mak, P. I. Mak, and M. I. Vai, "Implementation of SSVEP based BCI with Emotiv EPOC" 2012 IEEE International Conference on Virtual Environments Human-Computer Interfaces and Measurement Systems, vol. 17, pp. 34-37, 2012
  6. A. Stopczynski, C. Stahlhut, J. E. Larsen, M. K. Petersen, and L. K. Hansen, "The Smartphone Brain Scanner: A Portable Real-Time Neuroimaging System", PLOS ONE, vol. 9, no. 2, p. e86733, 2014 https://doi.org/10.1371/journal.pone.0086733
  7. S. Bhattacharyya, D Basu, A Konar, and D.N. Tibarewala, "Interval type-2 fuzzy logic based multiclass ANFIS algorithm for real-time EEG based movement control of a robot arm", Robotics and Autonomous Systems, vol. 68, pp. 104-115, 2015 https://doi.org/10.1016/j.robot.2015.01.007
  8. D. Zhang, and E. A. Johnson, "Substructure identification for shear structures: cross-power spectral density method" Smart Materials and Structures, vol. 21, no. 5, 2012
  9. H. L. Jian, and K. T. Tang, "Improving classification accuracy of SSVEP based BCI using RBF SVM with signal quality evaluation" Intelligent Signal Processing and Communication Systems(ISPACS), pp.302-306 2014
  10. B. E. Boser, I. M. Guyon, and V. N. Vapnik, "A training algorithm for optimal margin classifiers", Proceedings of the fifth annual workshop on Computational learning theory, pp 144-152, 1992
  11. N. V. Manyakov, N. Chumerin, A. Robben, A. Combaz, M. V. Vliet, and M. M. V. Hulle, "Sampled sinusoidal stimulation profile and multichannel fuzzy logic classification for monitor-based phase-coded SSVEP brain-computer interfacing", Journal of Neural Engineering, vol. 10, no. 3, 2013

Cited by

  1. Autonomous Mobile Robot Control using the Wearable Devices Based on EMG Signal for detecting fire vol.26, pp.3, 2016, https://doi.org/10.5391/JKIIS.2016.26.3.176
  2. Mobile Robot Control using Smart Phone for internet of Things vol.26, pp.5, 2016, https://doi.org/10.5391/JKIIS.2016.26.5.396