DOI QR코드

DOI QR Code

Salt tolerance and proline accumulation of potato (Solanum tuberosum L.) in vitro plants to NaCl treatment

NaCl 처리에 따른 감자 (Solanum tuberosum L.) 기내 식물체의 내염성 및 Proline 함량 변화

  • Im, Ju Sung (Highland Agriculture Research Institute, NICS, RDA) ;
  • Cho, Ji Hong (Highland Agriculture Research Institute, NICS, RDA) ;
  • Cho, Kwang Soo (Highland Agriculture Research Institute, NICS, RDA) ;
  • Chang, Dong Chil (Highland Agriculture Research Institute, NICS, RDA) ;
  • Jin, Yong Ik (Highland Agriculture Research Institute, NICS, RDA) ;
  • Yu, Hong Seob (Highland Agriculture Research Institute, NICS, RDA) ;
  • Cheun, Chung Gi (Highland Agriculture Research Institute, NICS, RDA) ;
  • Kim, Mee Ok (Highland Agriculture Research Institute, NICS, RDA) ;
  • Han, Da Som (Highland Agriculture Research Institute, NICS, RDA) ;
  • Lee, Seul Ki (Highland Agriculture Research Institute, NICS, RDA) ;
  • Kim, Wha Yeong (Dept. of Applied Plant Science, Kangnung-Wonju National Univ.)
  • 임주성 (농촌진흥청 국립식량과학원 고령지농업연구소) ;
  • 조지홍 (농촌진흥청 국립식량과학원 고령지농업연구소) ;
  • 조광수 (농촌진흥청 국립식량과학원 고령지농업연구소) ;
  • 장동칠 (농촌진흥청 국립식량과학원 고령지농업연구소) ;
  • 진용익 (농촌진흥청 국립식량과학원 고령지농업연구소) ;
  • 유홍섭 (농촌진흥청 국립식량과학원 고령지농업연구소) ;
  • 천충기 (농촌진흥청 국립식량과학원 고령지농업연구소) ;
  • 김미옥 (농촌진흥청 국립식량과학원 고령지농업연구소) ;
  • 한다솜 (농촌진흥청 국립식량과학원 고령지농업연구소) ;
  • 이슬기 (농촌진흥청 국립식량과학원 고령지농업연구소) ;
  • 김화영 (강릉원주대학교 식물생명과학과)
  • Received : 2015.03.11
  • Accepted : 2015.05.29
  • Published : 2015.06.30

Abstract

In order to compare salt tolerance among potato cultivars (Solanum tuberosum L.), in vitro plants of each cultivar were cultured on the Murashige and Skoog's medium containing different levels of NaCl (0, 75, 150, and 225 mM). The suitable level of NaCl for a comparison of the shoot and root growth between potato cultivars was 75mM. Shoot length and weight were better in 'Dejima', 'Superior', 'Jayoung', and 'Haryeong' than in other cultivars such as 'Goun' and 'Atlantic'. Normal root growth was observed in 'Seohong', 'Superior', and 'Haryeong', while 'Goun', 'Atlantic', 'Dejima', 'Jowon', and 'Chuback' showed no root. Proline contents in all the cultivars increased as affected by NaCl levels, then the increase amount was fewer in the cultivars showed a better growth in both shoot and root than in others showed a poor growth. As a result of this study, 'Superior' and 'Haryeong' were determined as salt tolerant cultivars and therefore using these cultivars it would be possible to potato production at salt arable land such as reclaimed tidal.

감자 12품종의 내염성 비교를 위하여 NaCl 0, 75, 150, 225 mM을 처리한 MS배지에서 줄기 단일절편을 기내 배양하여 신초길이와 무게, 근길이 및 proline 함량 변화를 조사하였다. NaCl 처리에 따른 신초와 근생장의 품종 간 비교에 적정한 NaCl 처리농도는 75 mM이었다. NaCl 150 mM과 225 mM 처리에서는 신초의 로제트화 및 엽의 백화현상이 심하여 품종 간 비교가 어려웠다. 신초의 길이와 무게는 '대지', '수미', '자영', '하령'이 양호하였으며, '고운', '대서', '홍영' 등은 불량하였다. 근길이는 '서홍', '수미', '하령' 등이 양호하였던 반면, '고운', '대서', '대지', '조원', '추백' 등은 극히 미미하였다. Proline 함량은 모든 품종에서 NaCl 처리농도가 높을수록 증가하였으며 그 증가량은 신초와 근생장이 양호했던 품종들이 불량했던 품종보다 더 낮은 경향이었다. 이상의 결과로 볼 때 '수미'와 '하령'이 NaCl 처리배지에서 신초와 근생장 모두 양호하여 내염성이 강한 품종으로 판단되었으며, 이들 품종들을 활용한 추가 포장시험을 통하여 국내 간척지 등 염류화 토양에서도 감자재배가 가능할 것으로 기대된다.

Keywords

References

  1. Amira MS, Abdul Q (2011) Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L.). J Saudi Soc Agricul Sci 10:7-15
  2. Arvin MJ, Donnelly DJ (2008) Screening potato cultivars and wild species to abiotic stresses using an electrolyte leakage bioassay. J Agric Sci Technol 10:33-42
  3. Asish KP, Anath BD (2005) Salt tolerance and salinity effects on plants: a review. Ecotox Environ Safety 60:324-349 https://doi.org/10.1016/j.ecoenv.2004.06.010
  4. Bates LS, Waldren RP, Teare ED (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205-207 https://doi.org/10.1007/BF00018060
  5. Bilski JJ, Nelson DC, Conlon RL (1988) The response of four potato cultivars to chloride and sulfate salinity. Am Potato J 65:85-90 https://doi.org/10.1007/BF02867456
  6. Bruns S, Caesar K (1990) Shoot development and tuber yield of several potato cultivars under high salt concentrations at different stages of development. Potato Res 33:23-32 https://doi.org/10.1007/BF02358127
  7. Burgutin AB, Butenko RG, Kaurov BA, Iddagoda N (1996) In vitro selection of potato for tolerance to sodium chloride. Russ J Plant Physio 143:524-531
  8. Cano EA, Perez-Alfocea F, Moreno V, Bolarin MC (1996) Responses to NaCl sress of cultivated and wild tomato species and their hybrids in callus cultures. Plant Cell Rep 15:791-794 https://doi.org/10.1007/BF00232231
  9. Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4:215-223 https://doi.org/10.1046/j.1365-313X.1993.04020215.x
  10. FAOSTAT (2012) http://faostat.fao.org/site/339/default.aspx
  11. Feitosa De Lacerta C, Cambraia J, Cano MAO, Ruiz HA (2001) Plant growth and solute accumulation and distribution in two sorghum genotypes under NaCl stress. Braz J Plant Physiol 13:270-284
  12. Fukutaku Y, Yamada Y (1984) Sources of proline nitrogen in water-stressed soybean II. Fate of 5N-labeled protein. Plant Physiol 61:622-628 https://doi.org/10.1111/j.1399-3054.1984.tb05180.x
  13. Gulati A, Pawan KJ (1993) In vitro selection of salt-resistant Vigna radiata (L.) Wilczek plants by adventitious shoot formation from cultured cotyledon explants. J Plant Physiol 142:99-102 https://doi.org/10.1016/S0176-1617(11)80114-8
  14. Hasegawa PM, Bressa RA, Zhu JK, Bohnert H (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463-499 https://doi.org/10.1146/annurev.arplant.51.1.463
  15. Hmida-Sayari A, Gargouri-Bouzid R, Bidani A, Jaoua L, Savoure A, Jaoua S (2005) Overexpression of Delta(1)-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants. Plant Sci 169:746-752 https://doi.org/10.1016/j.plantsci.2005.05.025
  16. Jaarsma R, de Vries RSM, de Boer AH (2013) Effect of salt stress on growth, Na+ accumulation and proline metabolism in potato (Solanum tuberosum). PLoS ONE 8:e60183 https://doi.org/10.1371/journal.pone.0060183
  17. Jefferies RA (1996) Evaluation of seedling selection for salinity tolerance in potato (Solanum tuberosum L.). Euphytica 88:207-213 https://doi.org/10.1007/BF00023892
  18. Khavarinejad RA, Mostofi Y (1998) Effects of NaCl on photosynthetic pigments, saccharides, and chloroplast ultrastructure in leaves of tomato cultivars. Photosynthetica 35:151-154 https://doi.org/10.1023/A:1006846504261
  19. Khrais T, Leclerc Y, Donnelly DJ (1998) Relative salinity tolerance of potato cultivars assessed by in vitro screening. Amer J of Potato Res 75:207-210 https://doi.org/10.1007/BF02854214
  20. Kim HS, Heung JJ, Joung YH, Joung H (1995) In vitro selection of salt-resistant Solanum tuberosum L. varieties. J Kor Soc Hort Sci 36:172-178
  21. Kim S, Yang CH, Jeong JH, Choi WY, Lee KS, Kim SJ (2013) Physiological response of potato variety to soil salinity. Kor J Crop Sci 58:85-90 https://doi.org/10.7740/kjcs.2013.58.2.085
  22. Levy D, Fogelman E, Ytzhak Y (1993) Influence of water and soil salinity on emergence and early development of potato (Solanum tuberosum L.) cultivars and effect of physiological age of seed tubers. Potato Res 36:335-340 https://doi.org/10.1007/BF02361800
  23. Levy D, Veilleux RE (2007) Adaptation of potato to high temperatures and salinity-a review. Potato Res 84:487-506 https://doi.org/10.1007/BF02987885
  24. Maas EV (1985) Crop tolerance to saline sprinkling water. Plant Soil 89:273-284 https://doi.org/10.1007/BF02182247
  25. Maas EV, Hoffman GJ (1977) Crop salt tolerance-current assessment. J Irrig Drain Div Proc Am Soc Civil Eng 103:115-134
  26. Mansour MMF (1998) Protection of plasma membrane of onion epidermal cells by glycine betaine and proline against NaCl stress. Plant Physiol Biochem 36:767-772 https://doi.org/10.1016/S0981-9428(98)80028-4
  27. Martinez CA, Maestri M, Lani EG (1996) In vitro salt tolerance and proline accumulation in Andean potato (Solanum spp.) differing in frost resistance. Plant Sci 116:177-184 https://doi.org/10.1016/0168-9452(96)04374-9
  28. Morpurgo R (1991) Correlation between potato clones grown in vivo and in vitro under sodium chloride stress conditions. Plant Breed 107:80-82 https://doi.org/10.1111/j.1439-0523.1991.tb00532.x
  29. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol plantarum 15:473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  30. Naik PS, Widholm JM (1993) Comparison of tissue culture and whole plant responses to salinity in potato. Plant Cell Tissue and Organ Culture 33:273-280 https://doi.org/10.1007/BF02319012
  31. Nanjo T, Kobayashi M, Yoshiba Y, Wada K, Tsukaya H, Kakaubari Y, Yamaguchi-shinozaki K, Shinozaki K (1999) Biological functions of proline in morphogenesis and osmotolerance revealed in antisense transgenic Arabidopsis thaliana. Plant J 18:185-193 https://doi.org/10.1046/j.1365-313X.1999.00438.x
  32. Paleg LG, Steward GR, Bradbeer JW (1984) Proline and glycine betaine influence protein solvation. Plant Physiol 75:974-978 https://doi.org/10.1104/pp.75.4.974
  33. Paliwal KV, Yadav BR (1980) Effect of saline irrigation water on the yield of potato. Indian J Agricultural Sci 50:1-33
  34. Queiros F, Fidalgo F, Santos I, Salema R (2007) In vitro selection of salt tolerant cell lines in Solanum tuberosum L. Biologia Plantarum 51:728-734 https://doi.org/10.1007/s10535-007-0149-y
  35. Rahnama H, Ebrahimzadeh H (2004) The effect of NaCl on proline accumulation in potato seedlings and calli. Acta Physiol Plantarum 26:263-270 https://doi.org/10.1007/s11738-004-0016-9
  36. Rains DW, Croughan SS, Croughan TP (1986) Isolation and characterization of mutant cell lines and plants: salt tolerance. I.K. Vasil (Ed.), Cell Culture and Somatic Cell Genetics of Plants, Academic Press Inc, Orlando pp 537-547
  37. Rhoades JD, Loveday J (1990) Salinity in irrigated agriculture. In: Stewart BA, Nielsen DR, (eds.), Irrigation of Agricultural Crops, American Society of Agronomy, Madison, Wisconsin, pp 1089-1142
  38. Ruiz Carrasco KB, Baroni Fornasiero R, Tassoni A, Bagni N (2007) Identification of two phenotypes of Arabidopsis thaliana under in vitro salt stress conditions. Biologia Plantarum 51:436-442 https://doi.org/10.1007/s10535-007-0093-x
  39. Rural Development Administration (2011) The potato. RDA, Suwon, Korea, pp 208-209
  40. Silva JAB, Otoni WC, Martinez CA, Dias LM, Silva MAP (2001) Microtuberization of Andean potato species (Solanum spp.) as affected by salinity. Scientia Horticulturae 89:91-101 https://doi.org/10.1016/S0304-4238(00)00226-0
  41. Steward CR, Lee JA (1974) The rate of proline accumulation in halophytes. Planta 120:279-289 https://doi.org/10.1007/BF00390296
  42. Szabados L, Savoure A (2010) Proline: a multifunctional amino acid. Trends in Plant Sci 15:89-97
  43. Tai M (1984) Physiological genetics of salt resistance in higher plants: studies on the level of the whole plant and isolated organs, tissues and cells. R.C. Staples, G.H. Toenniessen (Eds.), Salinity Tolerance in Plants, Strategies for Crop Improvement, Wiley, New York, pp 301-320
  44. Tang L, Kwon SY, Kwak SS, Sung CK, Lee HS (2003) Susceptibility of two potato cultivars to various environmental stresses. Korean J Plant Biotechnol 30:405-410 https://doi.org/10.5010/JPB.2003.30.4.405
  45. van Hoorn JW, Katerji N, Hamdy A, Mastrorilli M (1993) Effect of saline water on soil salinity and on water stress, growth, and yield of wheat and potatoes. Agric Water Mgmt 23:247-265 https://doi.org/10.1016/0378-3774(93)90032-6
  46. Werner JE, Finkelstein RR (1995) Arabidopsis mutants with reduced response to NaCl and osmostic stress. Physiol Plantarum 93:659-666 https://doi.org/10.1111/j.1399-3054.1995.tb05114.x
  47. Yun DJ (2005) Molecular mechanism of plant adaption to high salinity. Korean J Plant Biotechnol 32:1-14 https://doi.org/10.5010/JPB.2005.32.1.001
  48. Zidan M, Azaizeh H, Neumann PM (1990) Does salinity reduce growth in maize root epidermal cells by inhibiting their capacity for cell wall acidification. Plant Physiol 93:7-11 https://doi.org/10.1104/pp.93.1.7