DOI QR코드

DOI QR Code

Separation of Hydrogen-Nitrogen Gases by PDMS-SiO2·B2O3 Composite Membranes

PDMS-SiO2·B2O3 복합막에 의한 수소-질소 기체 분리

  • Lee, Suk Ho (Department of Chemistry, Sang Myung University) ;
  • Kang, Tae Beom (Department of Chemistry, Sang Myung University)
  • Received : 2015.02.07
  • Accepted : 2015.03.21
  • Published : 2015.04.30

Abstract

$SiO_2{\cdot}B_2O_3$ was prepared by trimethylborate (TMB)/tetraethylorthosilicate (TEOS) mole ratio 0.01 at $800^{\circ}C$. PDMS[poly(dimethysiloxane)]-$SiO_2{\cdot}B_2O_3$ composite membranes were prepared by adding porous $SiO_2{\cdot}B_2O_3$ to PDMS. To investigate the characteristics of PDMS-$SiO_2{\cdot}B_2O_3$ composite membrane, we observed PDMS-$SiO_2{\cdot}B_2O_3$ composite membrane using TG-DTA, FT-IR, BET, X-ray, and SEM. PDMS-$SiO_2{\cdot}B_2O_3$ composite membrane was studied on the permeabilities of $H_2$ and $N_2$ and the selectivity ($H_2/N_2$). Following the results of TG-DTA, BET, X-ray, FT-IR, $SiO_2{\cdot}B_2O_3$ was the amorphous porous $SiO_2{\cdot}B_2O_3$ with $247.6868m^2/g$ surface area and $37.7821{\AA}$ the mean of pore diameter. According to the TGA measurements, the thermal stability of PDMS-$SiO_2{\cdot}B_2O_3$ composite membrane was enhanced by inserting $SiO_2{\cdot}B_2O_3$. SEM observation showed that the size of dispersed $SiO_2{\cdot}B_2O_3$ in the PDMS-$SiO_2{\cdot}B_2O_3$ composite membrane was about $1{\mu}m$. The increasing of $SiO_2{\cdot}B_2O_3$ content in PDMS leaded the following results in the gas permeation experiment: the permeability of both $H_2$ and $N_2$ was increased, and the permeability of $H_2$ was higher than $N_2$, but the selectivity($H_2/N_2$) was decreased.

졸겔법에 의해서 trimethylborate (TMB)/tetraethylorthosilicate (TEOS) 몰비 0.01, 온도 $800^{\circ}C$에서 $SiO_2{\cdot}B_2O_3$가 제조되었다. 그리고 제조된 $SiO_2{\cdot}B_2O_3$와 PDMS[poly(dimethylsiloxane)]로부터 PDMS-$SiO_2{\cdot}B_2O_3$ 복합막을 제조하고 막의 물리화학적 특성을 TG-DTA, FT-IR, BET, X-ray, SEM에 의해 조사하고 그리고 $H_2$$N_2$의 투과도와 선택도를 조사하였다. TG-DTA, BET, X-ray, FT-IR 측정에 의하면 $SiO_2{\cdot}B_2O_3$는 무정형의 다공성 $SiO_2{\cdot}B_2O_3$였으며, 기공의 평균직경은 $37.7821{\AA}$, 표면적은 $247.6868m^2/g$이었다. TGA 측정에 의하면 PDMS 내에 $SiO_2{\cdot}B_2O_3$가 첨가되었을 때 PDMS-$SiO_2{\cdot}B_2O_3$ 복합막의 열적 안정성은 향상되었다. SEM 관찰에 의하면 $SiO_2{\cdot}B_2O_3$는 약 $1{\mu}m$ 크기로 PDMS 내에 덩어리 상태로 뭉쳐서 분산되어 있었다. 기체투과실험에 의하면 PDMS 내에 $SiO_2{\cdot}B_2O_3$ 함량이 증가하면 $H_2$$N_2$의 투과도는 증가하였고, 질소보다 Lenard Jones 분자지름이 작은 $H_2$의 투과도는 $N_2$의 투과도보다 컸으며, 선택도($H_2/N_2$)는 감소하였다.

Keywords

References

  1. D. P. Queiroz and M. N. D'Pinho, "Structural characteristics and gas permeation properties of polydimethylsiloxane/poly(propylene oxide) urethane/ urea bi-soft segment membranes", Polymer, 46, 2346 (2005). https://doi.org/10.1016/j.polymer.2004.12.056
  2. B. D. Ratner, "Surface characterization of biomaterials by electron spectroscopy for chemical analysis", Ann. Biomed. Eng., 11, 313 (1983). https://doi.org/10.1007/BF02363290
  3. W. J. Ward III, W. R. Browall, and R. M. Salemme, "Ultrathin silicone/polycarbonate membranes for gas separation processes" J. Membr. Sci., 1, 99 (1976). https://doi.org/10.1016/S0376-7388(00)82259-0
  4. P. C. Lebaron and T. J. Pinnavaia, "Clay nanolayer reinforcement of a silicone elastomer", Chem. Mater., 13, 3760 (2001). https://doi.org/10.1021/cm010982m
  5. Q. Hu, E. Marand, S. Dhingra, D. Fritsch, J. Wen, and G. Wilkes, "Poly(amide-imide)/$TiO_2$ nano-composite gas separation membranes: fabrication and characterization", J. Membr. Sci., 135, 65 (1997). https://doi.org/10.1016/S0376-7388(97)00120-8
  6. P. Winberg, K. Desitter, C. Dotremont, S. Mullens, I. F. J. Vankelecom, and F. H. J. Maurer, "Free volume and interstitial mesopores in silica filled poly(1-trimethylsilyl-1-propyne) nanocomposites", Macromolecules, 38, 3776 (2005). https://doi.org/10.1021/ma047369j
  7. D. Gomes, S. P. Nunes, and K. Peinemann, "Membranes for gas separation based on poly(1-trimethylsilyl-1-propyne)-silica nanocomposites", J. Membr. Sci., 246, 13 (2005). https://doi.org/10.1016/j.memsci.2004.05.015
  8. J. H. Kim and Y. M. Lee, "Gas permeation properties of poly(amide-6-b-ethylene oxide)-silica hybrid membranes", J. Membr. Sci., 193, 209 (2001). https://doi.org/10.1016/S0376-7388(01)00514-2
  9. H. B. Park, C. H. Jung, Y. K. Kim, S. Y. Nam, S. Y. Lee, and Y. M. Lee, "Pyrolytic carbon membranes containing silica derived from poly(imide siloxane): the effect of siloxane chain length on gas transport behavior and a study on the separation of mixed gases", J. Membr. Sci., 235, 87 (2004). https://doi.org/10.1016/j.memsci.2004.01.025
  10. S. Zhong, C. Li, Q. Li, and X. Xiao, "Supported mesoporous $SiO_2$ membrane synthesized by sol-gel template technology", Sep. Purif. Technol., 32, 17 (2003). https://doi.org/10.1016/S1383-5866(03)00034-0
  11. S. Zhong, C. Li, and X. Xiao, "Preparation and characterization of polyimide-silica hybrid membranes on kieselguhr-mullite supports", J. Membr. Sci., 199, 53 (2002). https://doi.org/10.1016/S0376-7388(01)00676-7
  12. S. Ulutan and T. Nakagawa, "Separability of ethanol and water mixtures through PTMSP-silica membranes in pervaporation", J. Membr. Sci., 143, 275 (1998). https://doi.org/10.1016/S0376-7388(98)00022-2
  13. C. Dotremont, B. Brabants, K. Geeroms, J. Mewis, and C. Vandecasteele, "Sorption and diffusion of chlorinated hydrocarbons in silicate-filled PDMS membranes", J. Membr. Sci., 104, 109 (1995). https://doi.org/10.1016/0376-7388(95)00019-9
  14. S. B. Tankekim-Ersolmaz, and L. Atalay-Oral etc, "Effect of zeolite particle size on the performance of polymer-zeolite mixed matrix membranes", J. Membr. Sci., 175, 285 (2000). https://doi.org/10.1016/S0376-7388(00)00423-3
  15. M. Jia, K. V. Peinemann, and R. D. Behling, "Molecular sieving effect of the zeolite-filled silicone rubber membrane in gas separation", J. Membr. Sci., 57, 289 (1991). https://doi.org/10.1016/S0376-7388(00)80684-5
  16. S. P. Nunes, J. Schultz, and K. V. Peinemann, "Silicone membrane with silica nanoparticles", J. Mater. Sci. Lett., 15, 1139 (1996). https://doi.org/10.1007/BF00539961
  17. C. Joly, S. Goizet, J. C. Schrotter, J. Sanchez, and M. Escoubes, "Sol-gel polyimide-silica composite membrane: gas transport properties", J. Membr. Sci., 130, 63 (1997). https://doi.org/10.1016/S0376-7388(97)00008-2
  18. C. J. Cornelius and E. Marand, "Hybrid silica-polyimide composite membranes : gas transport properties", J. Membr. Sci., 202, 97 (2002). https://doi.org/10.1016/S0376-7388(01)00734-7
  19. H. Matsuyama, M. Teramoto, and K. Hirai, "Effect of plasma treatment on $CO_2$ permeability and selectivity of poly(dimethylsiloxane) membrane", J. Membr. Sci., 99, 139 (1995). https://doi.org/10.1016/0376-7388(94)00217-M
  20. H. B. Kim, M. W. Lee, W. K. Lee, and S. H. Lee, "Permeation properties of single gases ($N_2$, $O_2$, $SF_6$, $CH_4$) through PDMS and PEBAX membranes", Membr. J., 22, 201 (2012).
  21. S. L. Hong and H. K. Lee, "Preparation and permeation characteristics of PTMSP-PDMS-silica/PEI composite membranes", Membr. J., 18, 146 (2008).
  22. O. S. Kim and S. R. Hong, "Separation of $H_2$ and $N_2$ gases by PTMSP-NaY zeolite composite membranes", Membr. J., 24, 285 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.4.285
  23. T. J. Choi and H. K. Lee, "Separation of hydrogen-nitrogen gas mixture by PTMSP-silica-PEI composite membranes", Membr. J., 14, 304 (2004).
  24. T. B. Kang, H. K. Lee, and Y. T. Lee, "Preparation of microporous silica membrane from TEOS-$H_2O$ system and separation of $H_2$-$N_2$ gas mixture", Membr. J., 10, 55 (2000).
  25. S. H. Lee and T. B. Kang, "Separation of hydrogen-nitrogen gases by PTMSP-borosilicate composite membranes", Membr. J., 24, 438 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.6.438
  26. H. Acharya, S. K. Srivastava, and A. K. Bhowmick, "Synthesis of partially exfoliated EPDM/ LDH nanocomposites by solution intercalation : Structural characterization and properties", Compos. Sci. Technol., 67, 2807 (2007). https://doi.org/10.1016/j.compscitech.2007.01.030
  27. D. Li, D. R. Seok, and S. T. Hwang, "Gas permeability of high-temperature-resistant silicone polymer-vycor glass membrane", J. Membr. Sci., 37, 267 (1987).