DOI QR코드

DOI QR Code

SAMELSON PRODUCTS IN FUNCTION SPACES

  • Received : 2014.09.02
  • Published : 2015.07.31

Abstract

We study Samelson products on models of function spaces. Given a map $f:X{\rightarrow}Y$ between 1-connected spaces and its Quillen model ${\mathbb{L}}(f):{\mathbb{L}}(V){\rightarrow}{\mathbb{L}}(W)$, there is an isomorphism of graded vector spaces ${\Theta}:H_*(Hom_{TV}(TV{\otimes}({\mathbb{Q}}{\oplus}sV),{\mathbb{L}}(W))){\rightarrow}H_*({\mathbb{L}}(W){\oplus}Der({\mathbb{L}}(V),{\mathbb{L}}(W)))$. We define a Samelson product on $H_*(Hom_{TV}(TV{\otimes}({\mathbb{Q}}{\oplus}sV),{\mathbb{L}}(W)))$.

Keywords

References

  1. J.-B. Gatsinzi, The homotopy Lie algebra of classifying spaces, J. Pure Appl. Algebra 120 (1997), no. 3, 281-289. https://doi.org/10.1016/S0022-4049(96)00037-0
  2. J.-B. Gatsinzi and R. Kwashira, Rational homotopy groups of function spaces, Homotopy Theory of Function Spaces and Related Topics (Y. Felix, G. Lupton and B. Smith, eds.), Contemporary Mathematics, 519, pp. 105-114, American Mathematical Society, Providence, 2010.
  3. G. Lupton and B. Smith, Rationalized evaluation subgroups of a map II: Quillen models and the adjoint maps, J. Pure Appl. Algebra 209 (2007), no. 1, 173-188. https://doi.org/10.1016/j.jpaa.2006.05.019
  4. G. Lupton and B. Smith, Whitehead products in function spaces: Quillen model formulae, J. Math. Soc. Japan 62 (2010), no. 1, 49-81. https://doi.org/10.2969/jmsj/06210049
  5. S. Maclane, Homology, Classics in Mathematics, Springer-Verlag, Berlin, Heidelberg, New York, 1995.
  6. D. Tanre, Homotopie rationnelle: Modeles de Chen, Sullivan, Lecture Notes in Math., 1025, Springer-Verlag, Berlin, 1983.