DOI QR코드

DOI QR Code

SYMPLECTIC 4-MANIFOLDS VIA SYMPLECTIC SURGERY ON COMPLEX SURFACE SINGULARITIES

  • PARK, HEESANG (DEPARTMENT OF MATHEMATICS KONKUK UNIVERSITY) ;
  • STIPSICZ, ANDRAS I. (RENYI INSTITUTE OF MATHEMATICS BUDAPEST)
  • Received : 2014.07.31
  • Published : 2015.07.31

Abstract

We examine a family of isolated complex surface singularities whose exceptional curves consist of two complex curves with high genera intersecting transversally. Topological data of smoothings of these singularities are determined. We use these computations to construct symplectic 4-manifolds by replacing neighborhoods of the exceptional curves with smoothings of the singularities.

Keywords

References

  1. W. Barth, K. Hulek, C. Peters, and A. Van de Ven, Compact Complex Surfaces, Second edition, Springer-Verlag, Berlin, 2004.
  2. A. Durfee, The signature of smoothings of complex surface singularities, Math. Ann. 232 (1978), no. 1, 85-98. https://doi.org/10.1007/BF01420624
  3. R. Fintushel and R. Stern, Rational blowdowns of smooth 4-manifolds, J. Differential Geom. 46 (1997), no. 2, 181-235. https://doi.org/10.4310/jdg/1214459932
  4. D. Gay and A. Stipsicz, Symplectic rational blow-down along Seifert fibered 3-manifolds, Int. Math. Res. Not. IMRN 2007 (2007), no. 22, Art. ID rnm084, 20 pp.
  5. D. Gay and A. Stipsicz, Symplectic surgeries and normal surface singularities, Algebr. Geom. Topol. 9 (2009), no. 4, 2203-2223. https://doi.org/10.2140/agt.2009.9.2203
  6. R. Gompf, A new construction of symplectic manifolds, Ann. of Math. (2) 142 (1995), no. 3, 527-595. https://doi.org/10.2307/2118554
  7. G. Greuel and J. Steenbrink, On the topology of smoothable singularities, Proc. Sympos. Pure Math. 40, Amer. Math. Soc., Providence, RI, 1983.
  8. C. LeBrun, Four-dimensional Einstein manifolds, and beyond, Surveys in differential geometry: essays on Einstein manifolds, 247-285, Surv. Differ. Geom., VI, Int. Press, Boston, MA, 1999.
  9. J. McCarthy and J. Wolfson, Symplectic normal connect sum, Topology 33 (1994), no. 4, 729-764. https://doi.org/10.1016/0040-9383(94)90006-X
  10. G. Megyesi, Generalisation of the Bogomolov-Miyaoka-Yau inequality to singular surfaces, Proc. London Math. Soc. 78 (1999), no 2, 241-282. https://doi.org/10.1112/S0024611599001719
  11. A. Melle-Hernandez, Milnor numbers for surface singularities, Israel J. Math. 115 (2000), 29-50. https://doi.org/10.1007/BF02810579
  12. A. Nemethi, Five lectures on normal surface singularities, Bolyai Soc. Math. Stud. 8, Low Dimensional Topology, 269-351, Janos Bolyai Math. Soc., Budapest, 1999.
  13. A. Nemethi, Resolution graph of some surface singularities. I, Singularities in algebraic and analytic geometry (San Antonio, TX, 1999), 89-128, Contemp. Math., 266, Amer. Math. Soc., Providence, RI, 2000.
  14. H. Park and A. Stipsicz, Smoothings of singularities and symplectic surgery, J. Symplectic Geom. 12 (2014), no. 3, 585-597. https://doi.org/10.4310/JSG.2014.v12.n3.a6
  15. J. Park, Seiberg-Witten invariants of generalised rational blow-downs, Bull. Austral. Math. Soc. 56 (1997), no. 3, 363-384. https://doi.org/10.1017/S0004972700031154
  16. A. Stipsicz, Simply connected symplectic 4-manifolds with positive signature, Turkish J. Math. 23 (1999), no. 1, 145-150.
  17. M. Symington, Symplectic rational blowdowns, J. Differential Geom. 50 (1998), no. 3, 505-518. https://doi.org/10.4310/jdg/1214424968
  18. M. Symington, Generalized symplectic rational blowdowns, Algebr. Geom. Topol. 1 (2001), 503-518. https://doi.org/10.2140/agt.2001.1.503
  19. C. Taubes, The Seiberg-Witten invariants and symplectic forms, Math. Res. Lett. 1 (1994), no. 6, 809-822. https://doi.org/10.4310/MRL.1994.v1.n6.a15