DOI QR코드

DOI QR Code

Enhanced Healing of Rat Calvarial Bone Defects with Hypoxic Conditioned Medium from Mesenchymal Stem Cells through Increased Endogenous Stem Cell Migration via Regulation of ICAM-1 Targeted-microRNA-221

  • Chang, Woochul (Department of Biology Education, College of Education, Pusan National University) ;
  • Kim, Ran (Department of Biology Education, College of Education, Pusan National University) ;
  • Park, Sang In (Institute of Catholic Integrative Medicine, Incheon St. Mary's Hospital, The Catholic University of Korea, College of Medicine) ;
  • Jung, Yu Jin (EIT/LOFUS Research Center, International St. Mary's Hospital, Catholic Kwandong University) ;
  • Ham, Onju (Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine) ;
  • Lee, Jihyun (Department of Biology Education, College of Education, Pusan National University) ;
  • Kim, Ji Hyeong (Department of Biology Education, College of Education, Pusan National University) ;
  • Oh, Sekyung (Department of Neurology and Neurological Sciences, Stanford University School of Medicine) ;
  • Lee, Min Young (Department of Molecular Physiology, College of Pharmacy, Kyungpook National University) ;
  • Kim, Jongmin (Department of Life Systems, Sookmyung Women's University) ;
  • Park, Moon-Seo (Department of Biology Education, College of Education, Pusan National University) ;
  • Chung, Yong-An (Institute of Catholic Integrative Medicine, Incheon St. Mary's Hospital, The Catholic University of Korea, College of Medicine) ;
  • Hwang, Ki-Chul (Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University) ;
  • Maeng, Lee-So (Institute of Catholic Integrative Medicine, Incheon St. Mary's Hospital, The Catholic University of Korea, College of Medicine)
  • Received : 2015.02.23
  • Accepted : 2015.04.24
  • Published : 2015.07.31

Abstract

The use of conditioned medium from mesenchymal stem cells may be a feasible approach for regeneration of bone defects through secretion of various components of mesenchymal stem cells such as cytokines, chemokines, and growth factors. Mesenchymal stem cells secrete and accumulate multiple factors in conditioned medium under specific physiological conditions. In this study, we investigated whether the conditioned medium collected under hypoxic condition could effectively influence bone regeneration through enhanced migration and adhesion of endogenous mesenchymal stem cells. Cell migration and adhesion abilities were increased through overexpression of intercellular adhesion molecule-1 in hypoxic conditioned medium treated group. Intercellular adhesion molecule-1 was upregulated by microRNA-221 in mesenchymal stem cells because microRNAs are key regulators of various biological functions via gene expression. To investigate the effects in vivo, evaluation of bone regeneration by computed tomography and histological assays revealed that osteogenesis was enhanced in the hypoxic conditioned medium group relative to the other groups. These results suggest that behavioral changes of endogenous mesenchymal stem cells through microRNA-221 targeted-intercellular adhesion molecule-1 expression under hypoxic conditions may be a potential treatment for patients with bone defects.

Keywords

References

  1. Ando, Y., Matsubara, K., Ishikawa, J., Fujio, M., Shohara, R., Hibi, H., Ueda, M., and Yamamoto, A. (2014). Stem cell-conditioned medium accelerates distraction osteogenesis through multiple regenerative mechanisms. Bone 61, 82-90. https://doi.org/10.1016/j.bone.2013.12.029
  2. Becker, H.M., Rullo, J., Chen, M., Ghazarian, M., Bak, S., Xiao, H., Hay, J.B, and Cybulsky, M.I. (2013). ${\alpha}1{\beta}1$ integrin-mediated adhesion inhibits macrophage exit from a peripheral inflammatory lesion. J. Immunol. 190, 4305-4314. https://doi.org/10.4049/jimmunol.1202097
  3. Bharadwaj, A.S., Schewitz-Bowers, L.P., Wei, L., Lee, R.W., and Smith, J.R. (2013). Intercellular adhesion molecule 1 mediates migration of Th1 and Th17 cells across human retinal vascular endothelium. Invest. Ophthalmol. Vis. Sci. 54, 6917-6925. https://doi.org/10.1167/iovs.13-12058
  4. Bragger, U., Hammerle, C.H., Mombelli, A., Burgin, W., and Lang, N.P. (1992). Remodelling of periodontal tissues adjacent to sites treated according to the principles of guided tissue regeneration (GTR). J. Clin. Periodontol. 19, 615-624. https://doi.org/10.1111/j.1600-051X.1992.tb01708.x
  5. Chang, W., Song, B.W., Lim, S., Song, H., Shim, C.Y., Cha, M.J., Ahn, D.H., Jung, Y.G., Lee, D.H., Chung, J.H., et al. (2009). Mesenchymal stem cells pretreated with delivered Hph-1-Hsp70 protein are protected from hypoxia-mediated cell death and rescue heart functions from myocardial injury. Stem Cells 27, 2283-2292. https://doi.org/10.1002/stem.153
  6. Chen, L., Tredget, E.E., Wu, P.Y., and Wu, Y. (2008). Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One 3, e1886. https://doi.org/10.1371/journal.pone.0001886
  7. Chen, L., Xu, Y., Zhao, J., Zhang, Z., Yang, R., Xie, J., Liu, X., and Qi, S. (2014a). Conditioned medium from hypoxic bone marrowderived mesenchymal stem cells enhances wound healing in mice. PLoS One 9, e96161. https://doi.org/10.1371/journal.pone.0096161
  8. Chen, Y., Bai, B., Zhang, S., Ye, J., Zhai, H., Chen, Y., Zhang, L., and Zeng, Y. (2014b). Study of a novel three-dimensional scaffold to repair bone defect in rabbit. J. Biomed. Mater. Res. A. 102, 1294-1304. https://doi.org/10.1002/jbm.a.34788
  9. Chen, X., Ali Khajeh, J., Ju, J.H., Gupta, Y.K., Stanley, C.B., Do, C., Heller, W.T., Aggarwal, A.K., Callaway, D.J., and Bu, Z. (2015). Phosphatidylinositol 4,5-bisphosphate clusters the cell adhesion molecule CD44 and assembles a specific CD44-Ezrin hetero complex, as revealed by small angle neutron scattering. J. Biol. Chem. 290, 6639-6652. https://doi.org/10.1074/jbc.M114.589523
  10. Dong, Z., Fu, S., Xu, X., Yang, Y., Du, L., Li, W., Kan, S., Li, Z., Zhang, X., Wang, L., et al. (2014). Leptin-mediated regulation of ICAM-1 is Rho/ROCK dependent and enhances gastric cancer cell migration. Br. J. Cancer 110, 1801-1810. https://doi.org/10.1038/bjc.2014.70
  11. Du, SJ., Frenkel, V., Kindschi, G., and Zohar, Y. (2001). Visualizing normal and defective bone development in zebrafish embryos using the fluorescent chromophore calcein. Dev. Biol. 238, 239-246. https://doi.org/10.1006/dbio.2001.0390
  12. Gong, A.Y., Hu, G., Zhou, R., Liu, J., Feng, Y., Soukup, G.A., and Chen, X.M. (2011). MicroRNA-221 controls expression of intercellular adhesion molecule-1 in epithelial cells in response to Cryptosporidium parvum infection. Int. J. Parasitol. 41, 397-403. https://doi.org/10.1016/j.ijpara.2010.11.011
  13. Ham, O., Lee, C., Song, B.W., Lee, S.Y., Kim, R., Park, J.H., Lee, J., Seo, H., Lee, C.Y., Chung, Y.A., et al. (2014). Upregulation of miR-23b enhances the autologous therapeutic potential for degenerative arthritis by targeting PRKACB in synovial fluidderived mesenchymal stem cells from patients. Mol. Cells 37, 449-456. https://doi.org/10.14348/molcells.2014.0023
  14. Hung, S.C., Pochampally, R.R., Chen, S.C., Hsu, S.C., and Prockop, D.J. (2007). Angiogenic effects of human multipotent stromal cell conditioned medium activate the PI3K-Akt pathway in hypoxic endothelial cells to inhibit apoptosis, increase survival, and stimulate angiogenesis. Stem Cells 25, 2363-2370. https://doi.org/10.1634/stemcells.2006-0686
  15. Huang, T.F., Yew, T.L., Chiang, E.R., Ma, H.L., Hsu, C.Y., Hsu, S.H., Hsu, Y.T., and Hung, S.C. (2013). Mesenchymal stem cells from a hypoxic culture improve and engraft Achilles tendon repair. Am. J. Sports Med. 41, 1117-1125. https://doi.org/10.1177/0363546513480786
  16. Hwang, H.J., Chang, W., Song, B.W., Song, H., Cha, M.J., Kim, I.K., Lim, S., Choi, E.J., Ham, O., Lee, S.Y., et al. (2012). Antiarrhythmic potential of mesenchymal stem cell is modulated by hypoxic environment. J. Am. Coll. Cardiol. 60, 1698-1706. https://doi.org/10.1016/j.jacc.2012.04.056
  17. Inukai, T., Katagiri, W., Yoshimi, R., Osugi, M., Kawai, T., Hibi, H., and Ueda, M. (2013). Novel application of stem cell-derived factors for periodontal regeneration. Biochem. Biophys. Res. Commun. 430, 763-768. https://doi.org/10.1016/j.bbrc.2012.11.074
  18. Jin, H.L., Kim, J.S., Kim, Y.J., Kim, S.J., Broxmeyer, H.E., and Kim, K.S. (2012). Dynamic expression of specific miRNAs during erythroid differentiation of human embryonic stem cells. Mol. Cells 34, 177-183. https://doi.org/10.1007/s10059-012-0090-6
  19. Kinnaird, T., Stabile, E., Burnett, M.S., Shou, M., Lee, C.W., Barr, S., Fuchs, S., and Epstein, S.E. (2004). Local delivery of marrowderived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 109, 1543-1549. https://doi.org/10.1161/01.CIR.0000124062.31102.57
  20. Lieberman, J.R., Daluiski, A., and Einhorn, T.A. (2002). The role of growth factors in the repair of bone. Biology and clinical applications. J. Bone Joint Surg. Am. 84-A, 1032-1044.
  21. Liu, T., Wu, G., Wismeijer, D., Gu, Z., and Liu, Y. (2013a). Deproteinized bovine bone functionalized with the slow delivery of BMP-2 for the repair of critical-sized bone defects in sheep. Bone 56, 110-118. https://doi.org/10.1016/j.bone.2013.05.017
  22. Liu, X., Chen, Q., Yan, J., Wang, Y., Zhu, C., Chen, C., Zhao, X., Xu, M., Sun, Q., Deng, R., et al. (2013b). MiRNA-296-3p-ICAM-1 axis promotes metastasis of prostate cancer by possible enhancing survival of natural killer cell-resistant circulating tumour cells. Cell Death Dis. 4, e928. https://doi.org/10.1038/cddis.2013.458
  23. Maurel, D.B., Benaitreau, D., Jaffre, C., Toumi, H., Portier, H., Uzbekov, R., Pichon, C., Benhamou, C.L., Lespessailles, E., and Pallu, S. (2014). Effect of the alcohol consumption on osteocyte cell processes: a molecular imaging study. J. Cell Mol. Med. 18, 1680-1693. https://doi.org/10.1111/jcmm.12113
  24. Miron, R.J., Wei, L., Bosshardt, D.D., Buser, D., Sculean, A., and Zhang, Y. (2014). Effects of enamel matrix proteins in combination with a bovine-derived natural bone mineral for the repair of bone defects. Clin. Oral Investig. 18, 471-478. https://doi.org/10.1007/s00784-013-0992-5
  25. Osugi, M., Katagiri, W., Yoshimi, R., Inukai, T., Hibi, H., and Ueda, M. (2012). Conditioned media from mesenchymal stem cells enhanced bone regeneration in rat calvarial bone defects. Tissue Eng. Part A 18, 1479-1489. https://doi.org/10.1089/ten.tea.2011.0325
  26. Park, Y.S., Hwang, S., Jin, Y.M., Yu, Y., Jung, S.A., Jung, S.C., Ryu, K.H., Kim, H.S., and Jo, I. (2015). CCN1 secreted by tonsilderived mesenchymal stem cells promotes endothelial cell angiogenesis via integrin ${\alpha}v$ ${\beta}3$ and AMPK. J. Cell Physiol. 230, 140-149. https://doi.org/10.1002/jcp.24690
  27. Sackstein, R., Merzaban, J.S., Cain, D.W., Dagia, N.M., Spencer, J.A., Lin, C.P., and Wohlgemuth, R. (2008). Ex vivo glycan engineering of CD44 programs human multipotent mesenchymal stromal cell trafficking to bone. Nat. Med. 14, 181-187. https://doi.org/10.1038/nm1703
  28. Sassoli, C., Frati, A., Tani, A., Anderloni, G., Pierucci, F., Matteini, F., Chellini, F., Zecchi Orlandini, S., Formigli, L., and Meacci, E. (2014). Mesenchymal stromal cell secreted sphingosine 1-phosphate (S1P) exerts a stimulatory effect on skeletal myoblast proliferation. PLoS One 9, e108662. https://doi.org/10.1371/journal.pone.0108662
  29. Smerling, C., Tang, K., Hofmann, W., and Danker, K. (2007). Role of the alpha(1) integrin cytoplasmic tail in the formation of focal complexes, actin organization, and in the control of cell migration. Exp. Cell Res. 313, 3153-3165. https://doi.org/10.1016/j.yexcr.2007.06.003
  30. Smith, A.N., Willis, E., Chan, V.T., Muffley, L.A., Isik, F.F., Gibran, N.S., and Hocking, A.M. (2010). Mesenchymal stem cells induce dermal fibroblast responses to injury. Exp. Cell Res. 316, 48-54. https://doi.org/10.1016/j.yexcr.2009.08.001
  31. Song, B.W., Chang, W., Hong, B.K., Kim, I.K., Cha, M.J., Lim, S., Choi, E.J., Ham, O., Lee, S.Y., Lee, C.Y., et al. (2013). Protein kinase C activation stimulates mesenchymal stem cell adhesion through activation of focal adhesion kinase. Cell Transplant. 22, 797-809. https://doi.org/10.3727/096368912X656126
  32. Srouji, S., Blumenfeld, I., Rachmiel, A., and Livne, E. (2004). Bone defect repair in rat tibia by TGF-beta1 and IGF-1 released from hydrogel scaffold. Cell Tissue Bank 5, 223-230. https://doi.org/10.1007/s10561-004-0503-7
  33. Sun, J., Zhou, H., Deng, Y., Zhang, Y., Gu, P., Ge, S., and Fan, X. (2012). Conditioned medium from bone marrow mesenchymal stem cells transiently retards osteoblast differentiation by downregulating runx2. Cells Tissues Organs 196, 510-522. https://doi.org/10.1159/000339245
  34. Tabet, F., Vickers, K.C., Cuesta Torres, L.F., Wiese, C.B., Shoucri, B.M., Lambert, G., Catherinet, C., Prado-Lourenco, L., Levin, M.G., Thacker, S., et al. (2014). HDL-transferred microRNA-223 regulates ICAM-1 expression in endothelial cells. Nat. Commun. 5, 3292.
  35. Ueda, R., Kohanbash, G., Sasaki, K., Fujita, M., Zhu, X., Kastenhuber, E.R., McDonald, H.A., Potter, D.M., Hamilton, R.L., Lotze, M.T., et al. (2009). Dicer-regulated microRNAs 222 and 339 promote resistance of cancer cells to cytotoxic Tlymphocytes by down-regulation of ICAM-1. Proc. Natl. Acad. Sci. USA 106, 10746-10751. https://doi.org/10.1073/pnas.0811817106
  36. Vertelov, G., Kharazi, L., Muralidhar, M.G., Sanati, G., Tankovich, T., and Kharazi, A. (2013). High targeted migration of human mesenchymal stem cells grown in hypoxia is associated with enhanced activation of RhoA. Stem Cell Res. Ther. 4, 5. https://doi.org/10.1186/scrt153
  37. Villar, C.C., and Cochran, D.L. (2010). Regeneration of periodontal tissues: guided tissue regeneration. Dent. Clin. North Am. 54, 73-92. https://doi.org/10.1016/j.cden.2009.08.011
  38. Walsh, W.R., Langdown, A.J., Auld, J.W., Stephens, P., Yu, Y., Vizesi, F., Bruce, W.J., and Pounder, N. (2008). Effect of low intensity pulsed ultrasound on healing of an ulna defect filled with a bone graft substitute. J. Biomed. Mater Res. B Appl. Biomater. 86, 74-81.
  39. Wang, C.Y., Yang, H.B., Hsu, H.S., Chen, L.L., Tsai, C.C., Tsai, K.S., Yew, T.L., Kao, Y.H., and Hung, S.C. (2012). Mesenchymal stem cell-conditioned medium facilitates angiogenesis and fracture healing in diabetic rats. J. Tissue Eng. Regen. Med. 6, 559-569. https://doi.org/10.1002/term.461
  40. Zhou, H., Xiao, C., Wang, Y., Bi, X., Ge, S., and Fan X. (2011). In vivo efficacy of bone marrow stromal cells coated with betatricalcium phosphate for the reconstruction of orbital defects in canines. Invest. Ophthalmol. Vis. Sci. 52, 1735-1741. https://doi.org/10.1167/iovs.10-5988
  41. Zuo, J., Xia, J., Ju, F., Yan, J., Zhu, A., Jin, S., Shan, T., and Zhou, H. (2013). MicroRNA-148a can regulate run-related transcription factor 3 gene expression via modulation of DNA methyltranferase 1 in gastric cancer. Mol. Cells 35, 313-319. https://doi.org/10.1007/s10059-013-2314-9

Cited by

  1. Insights into cell-free therapeutic approach: Role of stem cell “soup-ernatant” 2017, https://doi.org/10.1002/bab.1561
  2. Therapeutic Potential of Stem Cells Strategy for Cardiovascular Diseases vol.2016, 2016, https://doi.org/10.1155/2016/4285938
  3. Extrinsic and Intrinsic Mechanisms by Which Mesenchymal Stem Cells Suppress the Immune System vol.14, pp.2, 2016, https://doi.org/10.1016/j.jtos.2015.11.004
  4. Adipose Derived Stem Cells Conditioned Media in Combination with Bioceramic-Collagen Scaffolds Improved Calvarial Bone Healing in Hypothyroid Rats vol.19, pp.5, 2017, https://doi.org/10.5812/ircmj.45516
  5. Conditioned Media From Adipose-Derived Stromal Cells Accelerates Healing in 3-Dimensional Skin Cultures vol.76, pp.4, 2016, https://doi.org/10.1097/SAP.0000000000000754
  6. Autocrine signals increase ovine mesenchymal stem cells migration through Aquaporin-1 and CXCR4 overexpression vol.233, pp.8, 2018, https://doi.org/10.1002/jcp.26493
  7. MicroRNAs in the Migration of Mesenchymal Stem Cells pp.1558-6804, 2018, https://doi.org/10.1007/s12015-018-9852-7
  8. , a mimic of hypoxia, enhances bone marrow mesenchymal stem cells migration and osteogenic differentiation via STAT3 signaling pathway vol.42, pp.10, 2018, https://doi.org/10.1002/cbin.11017
  9. Regenerative Therapy for Cardiomyopathies pp.1937-5395, 2018, https://doi.org/10.1007/s12265-018-9807-z
  10. A Novel Secretome Biotherapeutic Influences Regeneration in Critical Size Bone Defects vol.29, pp.1, 2018, https://doi.org/10.1097/scs.0000000000004103
  11. Therapeutic Effects of Laser on Partial Osteotomy in the Rat Model of Hypothyroidism vol.9, pp.2, 2015, https://doi.org/10.15171/jlms.2018.23
  12. Conditioned medium of mesenchymal stem cells delays osteoarthritis progression in a rat model by protecting subchondral bone, maintaining matrix homeostasis, and enhancing autophagy vol.13, pp.9, 2019, https://doi.org/10.1002/term.2916
  13. Human fetal skin-derived stem cell secretome enhances radiation-induced skin injury therapeutic effects by promoting angiogenesis vol.10, pp.1, 2019, https://doi.org/10.1186/s13287-019-1456-x
  14. Synergies of accelerating differentiation of bone marrow mesenchymal stem cells induced by low intensity pulsed ultrasound, osteogenic and endothelial inductive agent vol.47, pp.1, 2015, https://doi.org/10.1080/21691401.2019.1576704
  15. Effectiveness of mesenchymal stem cell-conditioned medium in bone regeneration in animal and human models: a systematic review and meta-analysis vol.9, pp.None, 2015, https://doi.org/10.1186/s13619-020-00047-3
  16. Biomaterials Functionalized with MSC Secreted Extracellular Vesicles and Soluble Factors for Tissue Regeneration vol.30, pp.37, 2015, https://doi.org/10.1002/adfm.201909125
  17. Exosome-Derived Noncoding RNAs as a Promising Treatment of Bone Regeneration vol.2021, pp.None, 2015, https://doi.org/10.1155/2021/6696894
  18. A review of biomimetic scaffolds for bone regeneration: Toward a cell‐free strategy vol.6, pp.2, 2015, https://doi.org/10.1002/btm2.10206
  19. Assessment of the Bone Healing Process Mediated by Periosteum-Derived Mesenchymal Stem Cells’ Secretome and a Xenogenic Bioceramic-An In Vivo Study in the Rabbit Critical Size Calvarial Defect M vol.14, pp.13, 2021, https://doi.org/10.3390/ma14133512